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Abstract. In this paper, we propose an approach for automatic 3D
atrial segmentation from Gadolinium-enhanced MRIs based on volumet-
ric fully convolutional networks. The entire framework consists of two AQ1

networks, the first network is to roughly locate the atrial center based
on a low-resolution down-sampled version of the input and cut out a fixed
size area that covers the atrial cavity, leaving out other pixels irrelevant to
reduce memory consumption, and the second network is to precisely seg-
ment atrial cavity from the cropped sub-regions obtained from last step.
Both two networks are trained end-to-end from scratch using 2018 Atrial
Segmentation Challenge (http://atriaseg2018.cardiacatlas.org/) dataset
which contains 100 GE-MRIs for training, and our method achieves satis-
factory segmentation accuracy, up to 0.932 in Dice Similarity Coefficient
score evaluated on the 54 testing samples, which ranks 1st among all
participants.

Keywords: Automatic atrial segmentation ·
Fully convolutional networks · Gadolinium-enhanced-MRI

1 Introduction

Atrial fibrillation (AF) is one of the most common type of cardiac arrhythmia,
which greatly affects human health throughout the world [11]. But it is still
challenging to develop successful treatment because of the gaps in understand-
ing the mechanisms of AF [4]. Magnetic resonance images (MRI) can produce
pictures of different structures within the heart, and gadolinium contrast agen-
cies are usually used to improve the clarity of these images. These Gadolinium-
enhanced MRIs (GE-MRIs) are widely used to study the extent of fibrosis across
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the atria [9] and recent studies on human atria imaged with GE-MRIs have
suggested the atrial structure may hold the key to understanding and revers-
ing AF [4,15]. However, due to the low contrast between the atrial tissue and
surrounding background, it is very challenging to directly segment the atrial
chambers from GE-MRIs. Most of the existing atrial structural segmentation
methods are based on hand-crafted shape descriptors or deformable models on
non-enhanced MRIs [14], which can not be directly applied on GE-MRIs because
of the low contrast. As for GE-MRIs, current atrial segmentation approaches
are still labor-intensive, error/bias-prone, which are obviously not suitable for
practical and clinical medical use.

In the past decade, deep learning techniques, in particular Convolutional
Neural Networks (CNNs), have achieved great progress in various computer
vision tasks, and rapidly become a methodology of choice for analyzing med-
ical images [7]. Ciresan et al. [3] firstly introduced CNNs to medical image
segmentation by predicting a pixel’s label based on the raw pixel values in a
square window centered it. But this method is quite slow because the network
must run separately for every pixel within every single image and there is a lot
of redundancy due to overlapping windows actually. Later on, Ronneberger et
al. proposed U-Net [13], which consists of a contracting path to capture con-
text and a symmetric expanding path that enables precise localization and can
be trained end-to-end from very few images built upon the famous Fully Con-
volutional Network (FCN) [8]. Then, Çiçek et al. [2] replaced the convolution
operations in 2D U-Net with 3D counterparts and proposed 3D U-Net for volu-
metric segmentation. Furthermore, Milletari et al. [10] proposed V-Net, wherein
they introduce a novel loss function based on Dice coefficient and learn a resid-
ual function inspired by [6] which ensures convergence in less training time and
achieves good segmentation accuracy.

In this paper, we develop an automatic 3D atrial segmentation framework
using volumetric fully convolutional networks for 2018 Atrial Segmentation Chal-
lenge. The overall pipeline of our method is shown in Fig. 1, it consists of two
main stages: (1) in the first stage, we use a segmentation based localization
strategy to estimate a fixed size target region that covers the whole atria, and
leave out pixels outside this region to cut down memory consumption; (2) in
the second stage, we train a fine segmentation network based on the cropped
target region obtained in the first stage, and transform the predicted masks in
target region to the original size volume. The segmentation networks in these
two stages are both adapted from V-Net, which can be trained end-to-end and
used to segment the atrial cavity fully-automatically.

2 Method

2.1 Dataset and Preprocessing

Our framework is trained and tested using 2018 Atrial Segmentation Challenge
dataset, which contains 100 3D GE-MRIs for training (with both images and
masks) and 54 ones for testing (only with images). Each 3D MRI was acquired
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Fig. 1. The overall pipeline of our automatic 3D atrial segmentation framework.

using a clinical whole-body MRI scanner and contained raw MRI scan and the
corresponding ground truth labels for the left atrial (LA) cavity. The origi-
nal resolution of these data is 0.625 * 0.625 * 1.25 mm3, some of them are with
576 * 576 * 88 voxels and the others are with 640 * 640 * 88 voxels, and it is very
hard to apply neural networks to directly segment from such high-resolution
volumes on a normal personal computer due to memory restriction. Actually,
the LA cavity, even the whole heart, takes only a very small fraction of the
entire MRI volume and other places in the volume are irrelevant tissues or even
nothing, and such extreme class imbalance between the foreground atrial cavity
and background also makes the segmentation task hard. So we divide the seg-
mentation into two steps, the first is to locate the atria in the beginning and
the second is to segment the cavity from a much smaller cropped sub-volume,
which can be used to train networks on a normal PC. To make the input data
uniformly sized and suitable for V-Net architecture, we firstly crop and zero-pad
all volumes to with size 576 * 576 * 96 and the predictions are transformed to the
original size 576 * 576 * 88 or 640 * 640 * 88 in a post-precessing step. Then we use
a 3D version of contrast limited adaptive histogram localization (CLAHE) [12]
to enhance the contrast of GE-MRIs, and finally apply sample-wise normaliza-
tion wherein each volume is subtracted with the mean value of intensity and
divided by the deviation of intensity.

2.2 Network Architecture

The segmentation network involved in our framework is adapted from V-Net [10]
as illustrated in Fig. 2. It is a fully convolutional neural network, in which con-
volution operations are used to both extract features in different scales from the
data and reduce the resolution by applying appropriate stride. The left part of
the network is an encoding path following a typical architecture of a standard
convolutional network, which captures the context information in a local-to-
global sense, and the right part decodes the signal to its original size and out-
put two volumes indicating the probability of each voxel to be foreground and
background respectively.

The left side of the network is divided in a few stages that operate at different
resolutions, each stage consists of one or two convolutional layers, and learns a
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residual function, that is, the input of each stage is added to the output of
the last convolutional layer of that stage. The convolutions performed in each
layer use volumetric kernels with size 5 * 5 * 5, and the pooling is achieved by
convolution operation with size 2 * 2 * 2 and stride 2. Moreover, the number of
feature channels doubles at each stage of the encoding path while the resolutions
halves. In the end of each layer, batch normalization and PRelu non linearities
are used.

The right side of the network is a symmetric counterparts of the left that
extracts features and expands the spatial support to output a two channel vol-
umetric segmentation. Similar to the left part of the network, each stage of the
right part contains one or two convolutional layers, and also learns a residual
function. The convolutions performed in each layer also use volumetric kernels
with size 5 * 5 * 5, and the up-pooling is achieved by de-convolution operation
with size 2 * 2 * 2 and stride 2. The features extracted from the left part of the
network are forwarded to the corresponding stage of the right part, which is
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Fig. 2. The architecture of our segmentation network adapted from V-Net [10].
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shown as horizontal connections in Fig. 2. The same as those in the left part,
batch normalization and PRelu non linearities are used in the end of each layer.

2.3 Loss Function

The segmentation network predict two volumes of the same size of the input,
which are computed after a voxel-wise softmax activation in the final layer and
indicate the probability of each voxel to be foreground or background. In seg-
mentation tasks, our aim is to train a network whose foreground prediction is
as similar as the given ground truth mask. As the left atrial cavity only takes a
small fraction of the volume, we adopt the dice coefficient to define the loss func-
tion that to be minimize. The dice coefficient is used to measure the similarity
between two given binary data, and be expressed as

Dice =
2|a · b|

|a|2 + |b|2 , (1)

where a,b are two binary vectors. If a = b, Dice = 1, and if ai �= bi for all i,
Dice = 0. In our implementation, we use the foreground prediction (probabil-
ity) and the given ground truth as a,b respectively to compute the loss of the
network, which is simply defined as

Loss = 1 − Dice. (2)
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Fig. 3. The dice coefficients on validation data after training different epochs of the
two segmentation networks in our framework using dice loss (DC) and cross-entropy
loss (CE). Moreover, data augmentation (DCDA & CEDA) is applied in the second
network when using both loss functions.

This formulation do not need to assign weights to samples of different classes
to establish the right balance between foreground and background voxels and
is very easy to understand and implement. We also compared dice loss with
traditional cross-entropy loss, the results can be found in Fig. 3, wherein we can
see the segmentation networks converge faster and reach higher dice coefficients
when using dice loss function.
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2.4 Training

As we mentioned in the beginning, our framework consists of two main stages,
the first is to locate the target based on coarse segmentation, and the second is
to segment the left atria cavity from the cropped target region. So, we need to
train two segmentation networks. For the first network, we firstly down-sample
the input with sampling rate 0.25 * 0.25 * 0.5 and reduce the resolution from
576 * 576 * 96 to 144 * 144 * 48, which makes the network consumes much lower
memory and can be trained on a normal personal computer. Here choosing sam-
pling rate 0.5 in Z-axis instead of 0.25 is simply to avoid extreme narrow feature
maps produced by pooling. Then we feed the input into the network, the weights
are initialized using He initialization [5] and updated using Adam algorithm with
a fixed learning rate 0.001. We choose 80 out of the 100 data as training data
and the rest 20 as testing data, training is completed after 200 epochs and the
model with best dice score is saved, and we use mini-batch of size 4 in the first
network. For the second network, we firstly compute the barycenter of the given
ground truth mask, and crop a region of size 240 * 160 * 96 centered with the
barycenter from the original data. We have calculated the bounding box of all
given masks, and found that the maximum widths along x, y, z axis are 209,
128, 73 voxels respectively, so a region of size 240 * 160 * 96 is big enough to
cover the whole cavity. And then we feed the cropped input into the network
and train it in the same way as that in the first stage except that batch size is
1 due to memory restriction. To further improve the generalization ability and
segmentation accuracy of our framework, we also apply data augmentation in
the second network. Before feeding the cropped volume into the network, we
randomly choose to slightly translate, scale, rotate, or flip the input data in 3D,
and 3D elastic deformation is also used to generate shape diversity.

2.5 Testing

In the testing phase, a previously unseen MRI volume is firstly down-sampled
to 144 * 144 * 48, and fed into the first network. The network will output the
probability map for both background and foreground, we apply a simple binary
test on these two volumetric map where voxels are assign to be foreground or
background according which corresponding probability is higher, and this binary
mask is used to locate the target region. We compute the barycenter of the
predicted mask, crop a region of size 240 * 160 * 96 centered with this barycenter
and then feed it into the second network. The second network also output the
probability map and we can compute a binary mask inside the target region
and map it back to the original size volume, which is the final left atrial cavity
segmentation result, as shown in Fig. 1.

3 Result

We implemented our framework using PyTorch [1] with cuDNN, and ran all
experiments on a personal computer with 8 GB of memory, Intel Core i7 6700K
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CPU @ 4.00 Ghz, and a Nvidia GTX 1060 6G GPU. We validated our frame-
work on the 100 GE-MRIs for training provided by 2018 Atrial Segmentation
Challenge, and conducted a 5-fold cross validation, which leaves 80 volumes for
training and the rest 20 for validation.

We firstly compared between using dice loss and traditional cross-entropy
loss in our framework. The detailed statistics are listed in Table 1, each row con-
tains the segmentation dice coefficients using dice loss and cross-entropy loss of
the first, second network and the entire framework in each fold and the aver-
age is shown in the bottom. The segmentation accuracy are better when using
dice loss than cross-entropy loss in both two networks, and the data augmenta-
tion applied in the second network also improves the performance when using
dice loss. However, when using cross-entropy loss, data augmentation leads side
effects on the accuracy instead. One possible reason is that operations for data
augmentation, such as scale and deformation, greatly increase the variation of
atrial volume sizes which makes the problem of class-imbalance between fore-
ground and background more serious. For example, the size proportion between
atrial cavity and the background varies from sample to sample, but the class
weights used in cross-entropy are usually computed as fixed averages, and dice
loss do not suffer from class-imbalance problem at all. This situation can also
be found in plots of Fig. 3, where the dice coefficients oscillates when applying
data augmentation with cross-entropy loss while the other plots are smoother
and stabler in contrast. So when using cross-entropy in our framework, we do
not apply data augmentation in the second network. Moreover, we can also see
from the statistics that the segmentation accuracy of the entire framework is
actually the same with the second network, that means the accuracy of the first
step do not affect the final segmentation accuracy of the entire framework as
long as it gives relatively right target location and the cropped sub-region that
covers the entire left atrial cavity. Thus, we can improve the final segmentation
accuracy simply by further improving the second network’s performance, this is
also why we apply data augmentation only for the second network when using
dice loss.

The first network takes about 4.7 h to train and consume 4.2 GB GPU mem-
ory in average (input size is 144 * 144 * 48 and bath size is 4), and the second
network takes about 13.6 h to train and consume about 4 GB GPU memory
in average (input size is 240 * 160 * 96 and batch size is 1). At test time, our
framework can generate the entire segmentation output within 2s using about
2.6 GB GPU memory. This show our approach’s great potential for practical
clinical use, because of its simplicity, effectiveness, high accuracy and efficiency.
5 selected atrial segmentation results are listed in Fig. 4 comparing to the given
ground truth, the first 4 are those with top dice coefficients and the last one is
the worst case among all MRIs. For those MRIs with relative high equality, our
frameworks works pretty well, but when facing with MRIs that are unclear and
blurry, our method still struggles for higher segmentation accuracy.

Further Improvement for the Challenge. To reach higher segmentation
accuracy for the challenge, we doubled the number of feature channels in each
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stage of the network in Fig. 2 and used more convolutional layers (one or two
more in each stage). Then we retrained the second network using a Nvidia GTX
1080Ti 11G in each fold of the 5-fold cross validation shown in Table 1, the
models with best dice scores were saved and the average dice score increased
from 0.923 to 0.927 using more feature channels and deeper architecture. The
final predictions on testing data are computed as the average of all predictions
of these 5 models. According to the evaluation from the organizers, our method
achieves an average Dice Similarity Coefficient score of 0.932 on the 54 testing
data and rank 1st among all 27 participants, for more details please refer to the
challenge homepage, http://atriaseg2018.cardiacatlas.org/.
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Fig. 4. Segmentation results of 5 patients comparing to given ground truth. The ground
truths are given in red color and the predictions are colored in gray. The dice coefficients
of all predictions are shown in the left most column and the slice number (from axial
view) of each picture is shown in the upper left corner of itself. (Color figure online)
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Table 1. Segmentation accuracy. From left to right: barycenter estimation error
(BCE1) (in voxels), segmentation dice coefficients using dice loss (DC1) and cross-
entropy loss (CE1) of the first network, dice coefficients of the second network using
dice loss and cross-entropy without (DC2 & CE2) and with (DCDA2 & CEDA2) data
augmentation, and the entire framework on validation data using dice loss (DC) and
cross-entropy loss (CE).

Fold BCE1 DC1 CE1 DC2 DCDA2 CE2 CEDA2 DC CE

1 0.69,0.21,0.51 0.885 0.871 0.917 0.923 0.904 0.872 0.923 0.904

2 0.68,0.44,0.63 0.864 0.834 0.902 0.909 0.888 0.869 0.909 0.888

3 0.45,0.34,0.52 0.883 0.877 0.913 0.924 0.917 0.884 0.924 0.917

4 0.36,0.27,0.61 0.889 0.870 0.906 0.932 0.911 0.879 0.932 0.911

5 0.52,0.27,0.42 0.894 0.871 0.920 0.929 0.908 0.871 0.929 0.908

Avg 0.54,0.31,0.54 0.884 0.865 0.912 0.923 0.906 0.875 0.923 0.906

4 Conclusion

This paper detailed a simple but effective approach for automatic 3D atrial seg-
mentation from GE-MRIs, which consists of two volumetric fully convolutional
networks adapted from V-Net. The first network is used to coarsely segment the
atria from a low-resolution version of the input and estimate the location of the
atrial cavity. The second is used to further precisely segment the atria from the
cropped sub-region that covers the whole atria. This multi-resolution solution
has low memory costs, allowing the network to be trained on a normal personal
computer, and the high efficiency make it very easy to apply our segmentation
method to clinical use, for example, to reconstruct the structure of human atria
and to help researchers develop effective treatments for atrial fibrillation.
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