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a b s t r a c t 

Computer animation is frequently produced via interpolating a few sparse samples created by artists or 

reverse-engineered from physical prototypes, however, existing interpolation techniques fall short in effi- 

ciently generating a smooth 4D shape sequence from sparse samples. In this paper, we extend traditional 

curve fitting technique to 4D shape completion in shape space with novel technical components. In par- 

ticular, we seek a smooth 4D shape sequence by minimizing the total shape distortion along the sequence 

trajectory. After embedding the shapes into a linear rotation-invariant feature space, the complex global 

minimization of shape distortion in shape space can be converted into simple cubic spline fitting prob- 

lems in feature domains, which can be solved analytically. With cubic splines, we can not only handle 

in-between shapes interpolation, but also perform extrapolation towards more exciting results. To further 

improve the computational efficiency, we devise a hierarchical framework, in which the shape space is 

decomposed into high-frequency and low-frequency domains, the interpolation is only operated on the 

low-frequency domain, while the high-frequency details are enabled via deformation transfer techniques. 

We have conducted extensive experiments and comprehensive evaluations that showcase many attractive 

advantages of our novel method, including smooth interpolation between shapes, plausible extrapolation 

outside conventional shape domain, robustness under large deformations, and interactive performance 

for complicated shapes with high-quality details. 

© 2019 Elsevier Ltd. All rights reserved. 
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. Introduction and motivation 

Interpolation of shapes is important for various tasks in com-

uter graphics, especially for the generation of computer anima-

ion. In practice, an animated shape sequence is usually generated

ia iteratively interpolating between successive key-frames created

y artists with 3D modeling software, as shown in Fig. 1 . In tech-

ical essence, shape interpolation is to find averaged shapes of two

r more reference shapes according to certain non-linear geometric

r physical properties [3–5] . These refinement schemes actually do

inear interpolation between shapes in corresponding feature space

nd then reconstruct the averaged shape according to the interpo-

ated features, and the transition between any two shapes of these

ethods usually seems desirable. However, when considering a

mooth 4D shape sequence completed from a few sparse samples,

imply subdividing between two successive key-frames may lead
∗ Corresponding author. 
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o artifacts around key-frames. As shown in the top row of Fig. 1 ,

he linearity in shape space results in an obvious sharp corner in

he middle of the cactus sequence. Thus, it is still challenging to

omplete a smooth 4D shape sequence from a few sparse shapes

ampled along temporal axis, namely to produce a smooth curve

n shape space that goes through those sparse sampled points, and

uarantee the quality and efficiency simultaneously. 

Smoothly interpolating key-frames of animated characters could

ate back to the pioneering works of Kochanek and Bartels [6] and

asseter [7] . However, directly interpolating in Euclidean space will

ive rise to many artifacts, such as distortion, shearing, and other

ndesirable transitions, and thus researchers move their foci on

nterpolation in shape feature space afterwards. The idea of using

urves for shape interpolation is introduced by Kilian et al. [1] ,

herein they treat shapes as points in a shape space and compute

eodesics for interpolating between two given shapes. However,

he geodesic between two endpoints with natural boundary is

ctually a straight line, and the curve fitted here is piece-wise

inear rather than smooth everywhere. Inspired by the curve

rocessing technique in Euclidean space, Brandt et al. [8] propose

eometric flows to smooth the motions or animations of shape

https://doi.org/10.1016/j.cag.2019.05.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cag
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cag.2019.05.014&domain=pdf
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Fig. 1. Comparison of the shape sequence completion results via computing geodesics [1] in shape space, spline in shell space [2] and our cubic splines in linear rotation 

invariant space, respectively listed in the top, middle, and bottom row. From left to right, it shows 3 different poses of a cactus shape, the fitted curves in shape space, the 

completion sequences viewed from front, top, and right. The input key-frames, interpolated and extrapolated shapes are separately colored in blue, green and yellow. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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sequence, which iteratively replace each shape with a weighted

average shape of a local neighborhood by globally minimizing an

energy to obtain smooth discrete geodesics in shape space. How-

ever, such post-processing is only suitable for refining traditional

subdivision interpolation between successive key-frames, which

still does not solve this problem fundamentally. Recently, Heeren

et al. [2] extend Euclidean splines to the Riemannian manifold of

discrete shells [9] , in which the associated metric measures both

bending and membrane distortion, and the problem is formulated

as a global optimization that finds a spline in shell space. How-

ever, the global optimization for splines in shape space and the

reconstruction of discrete shells are not efficient, especially when

the shapes have many details and too many vertices, or when the

desired interpolating sequence is very dense. 

Strongly inspired by the idea of fitting splines in shape space,

we also formulate the problem as a global optimization that mini-

mizes the accumulated shape distortion. Different from that in [2] ,

we don’t solve the optimization directly. Instead, we first embed

the shapes into a feature space via patch-based linear rotation-

invariant (LRI) coordinates [10] , which is robust to noise, efficient

both in representation and reconstruction, and also equipped with

capacity of describing large deformations. Then, the complex min-

imization in shape space can be converted into a few standard

cubic spline fitting problems in feature domains, and each spline

is a smooth curve consisting of piece-wise cubics. Next, we solve

for the coefficients of each cubic polynomial by a very small lin-

ear system in each feature domain, whose dimension only de-

pends on the number of key-frames and is independent of the

number of desired interpolating shapes. Finally, we reconstruct

the interpolated shapes in this sequence according to the interpo-

lated coordinates by also solving least squares systems efficiently.

To further improve the computational efficiency, we also devise

a multi-resolution scheme for model completion. We first apply

mesh simplification [11] on all key-frames, which decomposes the

shape space into a low-frequency part (primary poses) and a high-

frequency part (geometric details), then the interpolation is con-

ducted on the simplified shapes, and the final interpolating shape
equence is obtained via deformation transfer [12] , which trans-

ers the geometric details onto the simplified shapes and results

n a smooth and detailed high-quality shape sequence. In particu-

ar, the primary contributions of this paper can be summarized as

ollows: 

• We propose an efficient interpolation method for 4D shape se-

quence completion from a few sparse samples along temporal

axis via extending the idea of smooth curve fitting to 4D shape

sequence completion, which can produce smoother and more

plausible computer animations. 
• We re-formulate the problem of shape sequence completion as

a global optimization that minimizes the accumulated distor-

tion along the temporal axis and simplify it as cubic spline fit-

ting problems, which can be efficiently and analytically solved

by small linear systems. 
• We devise a hierarchical framework for interactive shape se-

quence completion, in which the shape space is decomposed

into high-frequency and low-frequency domains, the interpo-

lation is only operated on low-frequency domain and the

high-frequency details are synthesized by deformation transfer

techniques. 
• The new scheme is used to conduct interpolation between very

large deformations because of the good properties of patch-

based LRI coordinates. As a result, we can not only interpolate

in-between shapes but also extrapolate more plausible shapes,

because of the advantages of cubic splines. 

. Related works 

Closely relevant to the central theme, we now briefly review

revious approaches and their related applications in two cate-

ories: shape interpolation and smooth shape sequence creation. 

Shape interpolation . Given the source and target shapes repre-

ented with triangular meshes, the first step of shape interpolation

s to establish one-to-one correspondence between them. So

ar, shape correspondence has been well studied in computer
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raphics community. Various techniques have been proposed,

uch as performing common embedding [13] , parameterizing over

oherent base domains [14] and incrementally aligning the surface

atches [12] . However, even with absolutely reliable correspon-

ences, natural shape interpolation still remains to be challenging

n general when the shape deformation is large. To combat the

nwanted artifacts caused by linear interpolation of vertex po-

itions, several approaches have been proposed to interpolate

riangle-wise affine transformations instead. For example, Alexa

t al. [15] propose the famous as-rigid-as-possible (ARAP) shape

nterpolation method that reconstructs the interpolated shape

y separately blending the rotational and scaling components

f the transformation matrix between a pair of triangles. But

his method could exhibit serious artifacts for shapes with large

eformations. Xu et al. [16] interpolate the shapes from gradient

elds by blending those of the given shapes, which is named as

oisson shape interpolation. Similarly, Li et al. [17] interpolate

he shape using relative velocity fields in an as-isometric-as

ossible(AIAP) manner, and later Zhang et al. [18] propose a fast

IAP shape interpolation method to improve the computational

fficiency. Weber et al. [19] achieve a controllable conformal

nterpolation by blending the representations of two given shapes.

hen et al. [20] propose a bounded distortion interpolation which

educes the triangle distortion by blending the squared edge

engths of the given shapes. These methods are all using a con-

ormal parameterization algorithm [21] , and thus can not precisely

atisfy the interpolation requirement, which are also only suitable

or interpolating shapes with small deformations. Besides, Kilian

t al. [1] propose to interpolate models along geodesics in specific

hape space. Winkler et al. [3] propose to represent and interpolate

eshes in terms of edge lengths and dihedral angles, which adopts

he same local mesh properties for mesh interpolation as discrete

hells [9] . Under this representation, Fröhlich and Botsch [4] pro-

ose an example-driven method by incorporating structural or

natomical knowledge learned from given example poses. To im-

rove the computation efficiency, Fröhlich and Botsch perform the

onlinear optimization on reduced meshes and transfer the coarse

eshes to the high-resolution meshes with a multi-resolution

odeling method. Then von Tycowicz et al. [22] introduce a

eal-time non-linear interpolation by exploiting the structure of

he shape interpolation problem and restricting the solution into

 low-dimensional shape space and Xia et al. [23] use ghost

esh to accelerate the computation performance for interactive

hape interpolation applications. Lipman et al. [24] represent the

eometric details as discrete forms based on the local frames

f vertices, which is called linear rotation-invariant coordinates.

his kind of coordinates is very suitable for interpolation. And

he famous MESHIK [25] linearly blends the deformation gradient

etween triangles to recover intermediate shapes. Then, Baran

t al. [10] partition the shape into a few non-overlapped patches

nd achieve patch-based linear rotation-invariant coordinates 

or semantic deformation transfer. In this paper, we follow the

epresentation of patch-based linear rotation-invariant coordinates 

ecause of its many favorable advantages. 

Smooth shape sequence creation . Since our foci in this paper

re to reconstruct the shape deformation sequence from a few

ey-frames, here we concentrate on the space-time constrained

eformation-creating methods. In fact, such methods usually

nvolve complex geodesics curve based geometric interpolation

mong shapes [1] . And this problem is first introduced into

omputer graphics by Witkin and Kass [26] . Since then, various

echniques have been proposed to control different types of phys-

cal deformations, including ropes and strings [27] , fluids [28] ,

nd elastic solids [29] . The underlying optimization problems

re typically solved via gradient-decent-based approaches to

eal with the complex calculation of objective functions. Kircher
t al. [30] used rotation and translation invariant differential

urface representation for surface editing in both space and time.

ecently, Hildebrandt et al. [31] achieve this by conducting model

eduction on the underlying variational problem and employing

iggly splines to solve a set of the decoupled one-dimensional

pace-time problems. Cashman et al. [32] propose a fully geomet-

ic method to separate editable signals by extracting redundancy

mbedded in the time, pose and shape phases, and derive a

ontinuous representation from a discrete sequence of key frames.

randt et al. [8] extend the idea of smoothing curves in Euclidean

pace and propose geometric flows, which iteratively replaces each

hape with the average shape within a local neighborhood and

roduces smoother motions of shape sequence. However, these

ethods are used to smooth a sequence that is already dense and

ot suitable for creating smooth shape sequence from sparse sam-

les. Recently, Gao et al. [33,34] develop a data-driven approach

or shape morphing to obtain more realistic results by finding

 minimal distance path within the local spaces based on an

xisting database. However, the learned prior knowledge is usually

odel-specific and can not be directly applied to other cases.

eanwhile, Heeren et al. [35] find a time-discrete geodesic path in

hape space, similar to those in [1] , by a computational model for

eodesics in the space of thin shells, and extend it to Riemannian

anifolds of discrete shells [9] via spline fitting in shell space [2] .

ut the large-scale non-linear global optimization leads to a very

ad computational performance even though a multi-resolution

cceleration method proposed in [4] has been used. And Huber

t al. [36] introduce discrete Bézier curves in shell space and solve

olely local problems in time instead of a fully coupled global

ptimization problem with a large set of nonlinear constraints.

owever, a Bézier curve usually do not pass through the sample

oints except the ends, and is actually not suitable for our target. 

Our method is closely related to [2,10] . We follow the idea of

tting splines in shape space in [2] , and construct the shape space

y the patch-based LRI coordinates used in [10] . Unlike theirs, we

olve the problem of generating a smooth shape sequence by a

et of small tridiagonal linear systems and avoid the large-scale

on-linear global optimization, together with the efficient LRI

epresentation, our method can handle shapes with extremely

arge number of faces and achieves interactive performance. 

. Review on smooth curve fitting in euclidean space 

Before discussing the problem of completing 4D shape sequence

rom a few sparse samples, we firstly review how to interpolate

mooth curve from a few given points in Euclidean space. Given a

nite set of known points, fitting a curve that goes through these

oints is a practical problem in various fields, including computer-

ided geometric design, graphical rendering or even numerical cal-

ulation. The main problem here is to obtain and examine an inte-

ration rule based on integrating a curve passing through the given

et of points, so that the curve will have a small amount of twist-

ng or bending, which will be spread out whatever twisting and

ending is necessary. 

.1. Mathematical formulation of smooth curve fitting 

Given a set of J ≥ 2 different time points t j ∈ [0, 1] and asso-

iated data points p j ∈ R, j = 1 , . . . , J, we want to find a smooth

urve f : [0, 1] → R that goes through these points. Here, we only

onsider the 1-D case, and it is easy to generalize this to arbi-

rary dimension. In general, the twisting or bending of a curve in

ertain location can be evaluated by the second order derivative,

hich describes the rate of changes of the tangent direction of

he curve, and thus the problem of fitting a smooth curve can be

athematically formulated as minimizing the following integrated



132 Q. Xia, C. Chen and J. Liu et al. / Computers & Graphics 82 (2019) 129–139 

Fig. 2. The illustration of smooth curve approximation using global distortion op- 

timization, cubic spline fitting and linear interpolation, colored in red, green and 

blue, respectively. (a) The results of 3 curves approximated from 9 points marked 

by blue stars in 1-D Euclidean space. (b) The plot of the leading two principal com- 

ponents of 3 shape sequences completed from 4 given shapes in LRI feature space. 

(For interpretation of the references to color in this figure legend, the reader is re- 

ferred to the web version of this article.) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

a  

n  

a  

E  

g  

r  

i  

o  

T  

b  

w  

c  

t  

t  

t  

g  

t  

s  

b  

u  

p  

t  

fi  

t  

n  

t  

i  

t  

o  

d
 

o  

i  

e  

i  

d

4

 

(  

r  

u  

f  

l  

s  

p  

c

4

 

a  

t  
bending energy 

E( f ) = 

∫ 1 

0 

[
d 2 

dt 2 
f (t) 

]2 

dt, (1)

where f ranges over an appropriate set of fitting curves, which are

continuous and also have continuous first and second order deriva-

tives. And the square norm used here is to make sure the bend-

ing energy is non-negative. This minimization is to find a curve

that has minimal bending or twisting energy in a global sense and

the minimal second order derivatives everywhere guarantee the

smoothness of this curve in a local sense. Besides, the optimal fit-

ting curve f should also satisfy the interpolation constraints 

f (t j ) = p j , j = 1 , . . . , J. (2)

That means the optimal curve should pass through all these given

data points. When we have f (0) = f 0 and f (1) = f 1 , the optimal f

here is actually a straight line with f 0 and f 1 as endpoints, because

the second order derivative of a straight line equals zero every-

where, and thus the bending energy E is obviously zero, which is

also the minimum of course. The curve colored in red in Fig. 2 (a)

shows an example of smooth curve fitting by minimizing the inte-

grated bending energy which passes through 9 points in Euclidean

space, and this curve is smooth everywhere comparing to linear

interpolation which has obvious sharp corners at key-points. 

3.2. Analytical solution to smooth curve fitting 

For general cases when J > 2, the optimization in Eq. (1) can be

solved via its Euler-Lagrange equation as done in [2] . However, if

we want to produce a curve represented by K points, its discretized

Euler-Lagrange equation is a K × K linear system, when we want a

very dense points set, namely K is extremely large which is a com-

mon requirement for computer animation generation, solving such
Fig. 3. The results of our method for interpolating two cactus shapes colored in blue un

the left side, and the round circles indicate the interpolated shapes under natural (in o

interpretation of the references to color in this figure legend, the reader is referred to the
 linear system is not efficient even for the 1-D case, and of course

ot suitable for interactive applications. In this paper, we adopt

 different but much more efficient way to solve the problem in

q. (1) based on an observation that, the minimization of inte-

rated bending energy along the curve formulated as in Eq. (1) will

esult in a piece-wise cubic spline, and the proof can be found

n any Mathematics textbook related to spline interpolation or

ne can directly refer to the accompany Appendices of this paper.

hus, the optimal curve f in Eq. (1) is actually a piece-wise cu-

ic spline consisting of n = J − 1 cubics, which can be represented

ith piece-wise cubic polynomials, and each cubic contains four

oefficients. Therefore we need 4 n linear equations to determine

he 4 n coefficients of f , and leads to a simple J × J tridiagonal sys-

em which can be solved very easily to give the coefficients of

he polynomials [37] , usually J < < K . The dashed curve colored in

reen in Fig. 2 (a) shows an example of cubic spline fitting, and

he fitted smooth curve is actually the same with that fitted by

olving global blending minimization colored in red. As we know,

oundary conditions at endpoints for cubic splines are not unique,

sual conditions such as natural, periodic or Hermite can be ap-

lied for different purposes, as shown in Fig. 3 . Note that if t 0 and

 n are interior to the end points of the interval on which f is de-

ned, then to minimize Eq. (1) , f would be the same as that on [ t 0 ,

 n ]. Also, as cubic splines are expressed with piece-wise cubic poly-

omials for point that lies in [ t 0 , t n ], we can compute the deriva-

ives at t 0 and t n using the analytic expression of f , which makes

t possible to do extrapolation outside the range of [ t 0 , t n ]. One in-

uitive and simple way is linear extrapolation, wherein the value

f f at t < t 0 or t > t n can be computed based on the first order

erivative of f at t 0 or t n as f (t) = f ′ (t 0 )(t − t 0 ) + f (t 0 ) for t < t 0
r f (t) = f ′ (t n )(t − t n ) + f (t n ) for t > t n , shown as the bottom case

n Fig. 1 , and this linear extrapolation is used by default in all our

xperiments. It should be noted that, the linearity approximation

s only reasonable when the extrapolated point is near the given

efined interval. 

. Cubic splines in linear rotation invariant space 

As we know minimizing the blending or twisting of a curve

which can be described as the second order derivative and is also

elated to curvature) will result in a smooth cubic spline with nat-

ral boundary. In this section, we will transfer this simple but ef-

ective idea to spline fitting in shape space, following the formu-

ation in [2] , namely producing a smooth 4D shape sequence from

parse samples. The difference here is that we use a more com-

licated representation of ”point” in shape space than that in Eu-

lidean space. 

.1. Splines in shape space 

In Euclidean space, a smooth curve is fitted by minimizing an

ccumulated bending or twisting energy which is quantized as in-

egration of the squared second order derivative along this curve.
der different boundary conditions. Two fitted curves in shape space are shown on 

range) and Hermite (in green) boundary conditions shown on the right side. (For 

 web version of this article.) 
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Fig. 4. The interpolation and extrapolation results of our method comparing to the geodesics in shape space [1] . When only given two shapes, our method degenerates 

to the geodesics. Shapes colored in blue, green, and yellow indicate given, interpolated and extrapolated shapes. (For interpretation of the references to color in this figure 

legend, the reader is referred to the web version of this article.) 

Fig. 5. The shape sequence completed from 5 human shapes. Shapes colored in blue, and green indicate given and interpolated shapes. It should be noted that, the rotation 

of the first and last poses is nearly 180 degrees, that means triangles on the mesh may flip over from the first pose to the last, and the LRI coordinates still work well under 

such large deformations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

S  

t  

i  

a  

s

E  

w  

s  

c  

t  

s  

a  

h  

a  

t

s  

 

s  

w  

c  

m

4

 

q  

t  

m  

o  

t  

o  

a  

b  

b  

a  

m  

b  
imilarly, in the case of fitting 4D shape sequence in shape space,

he smooth sequence can also be intuitively obtained by minimiz-

ng distortions along the shape sequence. Let S be a shape space,

nd s is a smooth curve s : [0 , 1] → S, the total distortion of curve

 can be defined as 

[ s ] = 

∫ 1 

0 

s̈ 2 (t ) dt , (3)

here s̈ (t) is the second order derivative of curve s in shape space

imilar to that in Eq. (1) . The result of minimizing E among all

urves s with s (0) = s 0 and s (1) = s 1 with natural boundary condi-

ion is known as a geodesic in shape space [1] , as shown in Fig. 4 ,

imilar to the straight line in Euclidean case and this is actually

 generalization of Eq. (1) in a more general case. We consider J

igh-dimensional points s j ∈ S, j = 1 , . . . , J, and we want to obtain

 smooth curve in S, the same as that in Euclidean space, the op-

imal curve should also satisfies the interpolation constraints 

 (t j ) = s j , j = 1 , . . . , J. (4)

The minimization of this distortion under the interpolation con-

traints defined in Eq. (4) is a spline in shape space. In addition
e can also define different boundary conditions as those in Eu-

lidean space, examples of interpolation under Natural and Her-

ite boundary conditions are shown in Fig. 3 . 

.2. Linear rotation invariant representation 

A computer animation is usually characterized as a mesh se-

uence with varying vertex coordinates and fixed connectivity,

hus in this paper, we assume the connectivities of a set of given

eshes are the same and we only need to calculate vertex co-

rdinates for each shape along the sequence. In order to apply

he spline fitting in shape space to discrete settings in the case

f shape interpolation, we should firstly represent the 3D shapes

ppropriately in shape space. In this paper, we adapt the patch-

ased Linear Rotation Invariant (LRI) [10] representation to em-

ed the shape into a feature space, because it has many favor-

ble advantages, such as being capable of describing large defor-

ations shown in Fig. 5 , very suitable for not only interpolation

ut also extrapolation shown in Fig. 4 , suitable for PCA analysis
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shown in Fig. 2 , and efficient both for representation and recon-

struction shown in Table 2 . 

In patch-based LRI representation, one shape is referred as the

reference shape, and given another deformed shape, the defor-

mation can be represented as follows: given a face f with ver-

tices v f i (i = 1 , 2 , 3) and the unit normal direction n f , the deforma-

tion gradient D f for face f can be obtained as D f = [ v f 2 − v f 1 , v f 3 −
v f 1 , n f ][ ̃ v f 2 − ˜ v f 1 , ̃  v f 3 − ˜ v f 1 , ̃  n f ] 

−1 , where v are the vertex coordi-

nates and n are the normals of the deformed shape, and 

˜ v / ̃  n are

those of the reference shape. And then D f is further decomposed

into a rotation component R f and scaling/shear component S f by

polar decomposition: D f = R f S f . As those in [10] , we also parti-

tion shape into a collection of non-overlapping patches using the

method in [38] to improve the computation efficiency and the ro-

bustness under noise. Then the patch containing face f defined as

p ( f ) and the average rotations of the faces in patch i are defined

as G i . The patch-based LRI coordinates are vectors, including five

components: the scaling/shear matrix S f of each face, the connec-

tion map between each pair of adjacent patches, the relative rota-

tion of each face w.r.t. its belonging patch, the mean vertex posi-

tion of all the vertices v̄ and the mean rotation of all the faces R̄ .

The coordinates x are then represented as a vector 

x = [ S f , log ( G 

−1 
i 

G j ) , log (G 

−1 
p (f ) 

R f ) , ̄v , R̄ ] , (5)

for any face f and any pair of adjacent patches i and j , where log is

the matrix logarithm operation to allow rotation to be better com-

bined, G 

−1 
i 

G j is the connection map between adjacent patches i

and j . These components are put together as a feature vector. Given

such a coordinate, we can reconstruct the shape by solving two

linear systems, as those in [10] , the first is to reconstruct the rigid

rotation of each face and the second to recover the coordinate of

shape vertices, which can be factored once for a given mesh us-

ing a sparse Cholesky solver and each new pose requires only a

back-substitution. Thus it is very suitable for shape sequence com-

pletion, where we need to reconstruct many poses using the same

reference. 

After embedding the shape into a feature space X using patch-

based LRI coordinates, wherein a shape M is represented as a fea-

ture vector like that in Eq. (5) , the smooth curve s : [0, 1] → S we

are seeking in shape space now becomes the curve x : [0, 1] → X in

LRI feature space and the total distortion in Eq. (3) can be rewrite

as 

E[ x ] = 

∫ 1 

0 

|| ̈x || 2 dt = 

∫ 1 

0 

M ∑ 

i =0 

|| ̈x i || 2 dt = 

M ∑ 

i =0 

∫ 1 

0 

|| ̈x i || 2 dt, (6)

where x i is the i -th entry of x and M is the dimension of x . Obvi-

ously, the minimizer of Eq. (6) equals the concatenation of M min-

imizers of 
∫ 1 

0 || ̈x i || 2 dt, and 

∫ 1 
0 || ̈x i || 2 dt is exactly the same as that

of the 1-D case in Eq. (1) , whose minimizer has been proved to

be a cubic spline. Therefore, the problem of completing a smooth

shape sequence is now converted into fitting M independent 1-D

cubic splines in feature space, namely solving M small tridiagonal

linear systems as those in Section 3 , and then reconstructing the

vertex coordinates from the interpolated features. Fig. 2 (b) shows

3 shape sequences completed from 4 shapes by solving the global

distortion minimization, cubic spline fitting, and linear interpola-

tion in LRI feature space. For better visualization, we apply PCA

on the patch-based LRI coordinates and plot the leading two prin-

cipal components. It is obvious that the splines in Eq. (3) solved

by global minimization and our cubic spline fitting in LRI feature

space are the same to each other and smooth everywhere. 

It should be noted that, the patch-based LRI representation is

not the only choice in our 4D shape sequence completion frame-

work, other shape representation methods with comparable prop-

erties and advantages, which represent the shape with a long
eature vector that describes local or global properties and can

e used to reconstruct a shape according to itself, such as the

otation-strain coordinates in [39] and the rotation-invariant mesh

ifference (RIMD) representation in [40] , can also be easily inte-

rated into our framework. We use this representation here only

ecause of its favorable advantages discussed before. 

.3. Multi-resolution framework 

We have converted the problem of completing a smooth shape

equence into computing many 1-D cubic splines, which can be

fficiently solved via small tridiagonal linear systems instead of

olving the global optimization. However, when the given shapes

re with a lot of details and have a very large number of vertices

r faces, the patch-based LRI coordinates for one shape are rep-

esented as a very long feature vector. Thus, we should compute

o many cubic splines to reconstruct the shape sequence, which

ay not be efficient enough for interactive or real-time applica-

ions. Fortunately, we observed that, the details, like the textures,

n a 3D shape are usually fixed in the deformed sequence, so we

an deal with the completion in a multi-resolution sense. 

Similar to the way used in [23] , we firstly use an edge-

ollapse [11] scheme to coarsen the given meshes with around 2K

aces and 1K vertices (actual numbers depends on mesh complex-

ty), and we call it as ghost mesh, and each mesh is simplified with

xactly the same rule to keep the topology consistent across the

oarse meshes. It should be noted that, the method in [23] adopts

ibration modes to reduce the solution space for interactive shape

nterpolation, which is only suitable for interpolating between

hapes with small deformations and can not be directly applied

o our framework because we want to deal with shapes with very

arge deformations. In this paper, we only use their mesh coars-

ning method. The ghost meshes are actually the low-frequency

art of the shapes, which describes the primary variation of poses.

hen, we embed these ghost meshes into shape space via patch-

ased LRI coordinates, and here the dimension of these coordinates

s much smaller than that of the original meshes. With these co-

rdinates, we can fit 1-D cubic splines in each dimension of the

oordinates with analytical expression as cubic polynomials, and

hen we can reconstruct a smooth shape sequence using the inter-

olated LRI coordinates at arbitrary time point on interval [0, 1]. Of

ourse, the shape in this sequence is coarse and without details. Fi-

ally, we adopt the deformation transfer technique in [12] to trans-

er the details of the original mesh onto the interpolated coarse

esh, and obtain a smooth shape sequence with high-quality de-

ails. The deformation transfer technique needs to manually assign

orrespondences between the source and target shape, fortunately

dge-collapse [11] schemes simplify a mesh by collapsing a few

ertices into one, so each vertex on the ghost mesh has a few cor-

esponding vertices on the original mesh. For a vertex on the ghost

esh, we choose the nearest one of these vertices as its corre-

ponding vertex on the original mesh, and the results are shown

n Fig. 6 , together with the ghost meshes we used. 

. Experimental results and evaluations 

To verify the effectiveness and versatility, we have designed dif-

erent kinds of experiments, including the smooth interpolation

nd extrapolation from sparse samples, robust interpolation un-

er large deformations and highly-detailed shapes with extremely

arge number of vertices or faces, and the time statistics of all ex-

eriments are detailed in Table 1 , the time comparison to [2] is

iven in Table 2 . 

Implementation details . We have implemented our interactive 4D

hape sequence framework using C/C ++ on a PC with Intel Core
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Fig. 6. The automatically-built correspondences between key-frames and their ghost meshes. The key-frames are colored in green and smoothly shaded, the ghost meshes 

are colored in blue and shaded in faceted way, and the correspondences are shown with red lines. The numbers of faces for each shape are listed in the bottom. (For 

interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Table 1 

Performance statistics (in seconds). 

Models Cactus Handstand Human Centaur Elephant Armadillo Armadillo 

(10K) (20K) (25K) (32K) (80K) (233K) (1.3M) 

t ir 0.013 0.016 0.021 0.025 0.024 0.027 0.039 

t ts 0.014 0.022 0.029 0.038 0.053 0.46 2.862 

t o 0.25 0.60 0.65 0.75 1.29 6.5 37.2 

The runtime statistics of our framework to interpolate one shape. From top to bottom, t ir : time cost for interpolation and reconstruction 

on ghost mesh, t ts : time cost for deformation transfer, t o : time cost for interpolate one shape without using ghost. 

Table 2 

Performance comparison to [2] (in seconds). 

Model ( K , γ ) Method in [2] Ours 

t ir t ts t o t ir t ts t o 

Cactus (20,.05) 1.7 1.7 83 0.16 1.0 4.35 

Cactus (170,.05) 22 14 762 0.31 3.2 23.9 

Horse (40,.10) 22 5 238 0.35 2.2 11.4 

Armadillo (50,.006) 80 200 / 1.34 47.2 258.6 

Total runtime of shape sequence completion for generating a smooth curve of K 

shapes with γ indicating the fraction of remaining vertices on the ghost mesh. 

From left to right, t ir : time cost for interpolation and reconstruction on ghost mesh, 

t ts : time cost for deformation transfer, t o : time cost for interpolate one shape with- 

out using ghost, each one is stated both using the method in [2] and ours. 
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7-3770 CPU @ 3.40 GHz. In all of our experiments, the parame-

ers involved in our method are kept fixed unless otherwise stated.

ll shapes are approximately normalized into a bounding box with

nit size and the simplified meshes used in all experiments are

ith about 1K vertices and 2K faces. The patch-based LRI represen-

ation and reconstruction, as well as deformation transfer method

re implemented with the C/C ++ codes shared by the authors

ith default settings, then we implemented the edge-collapse al-

orithm according to [11] , and used Intel Math Kernel Library to

olve the tridiagonal linear systems for cubic spline fitting as de-

cribed in Section 3 . The number of sample points used to build

parse correspondence is set to be 50 similar to those in [12] . 

Choice of ghost resolutions . Fig. 7 shows an example of shape

equence completion from 3 poses of a centaur shape, this cen-

aur is triangulated with about 32K faces, and we conduct a group

f 10 experiments with ghost mesh of 0.5K, 1K, 2K, 3K, 5K, 10K,

2K, 15K, 24K and 32K faces, and generate a shape sequence of

3 shapes each. We show the 11th shape in each sequence, in-

icated as a blue point on the fitted curve, and the shapes with

host meshes of different resolutions are color coded by the differ-

nce between the 11th shape in the sequence without using ghost

esh and themselves. The difference is directly quantized as the

2-norm of vertex positions. We can see that, using a ghost mesh

ith only 500 faces, the reconstruction error is very large, because

he ghost mesh with too few faces can not cover the variation of

oses. For example, the deformation of left foreleg and two arms of
he centaur are not correctly described, which results in large er-

or. However, when the ghost mesh has more than 2K faces, the in-

erpolations between the cases with and without using ghost mesh

re almost the same. Besides, we also plot the Karni-Gotsman (KG)

rror [41,42] of each sequence reconstructed using ghost meshes of

ifferent resolutions for shapes of centaur, human, armadillo and

lephant in Fig. 8 (a). And the average computation time to recon-

truct one shape for the centaur using ghost meshes of different

esolutions is shown in Fig. 8 (b). KG-error is a distortion metric

hat measures the difference between two shape sequences, which

s defined as 

 = 100 

|| A − ˜ A || 
|| A − E (A ) || , (7) 

here A is a matrix containing the sequence without using ghost,
˜ 
 is the one using ghost, and E ( A ) is an average matrix of A . We

an see that, for the centaur shape, when the ghost mesh has more

han 2K faces, the KG-error is under 5% and has no obvious de-

rease when the number of faces on ghost mesh increases. How-

ver, the increase of ghost faces will of course affect the perfor-

ance for generating shapes, as shown in Fig. 8 (b), thus we can

nd a balance between the interpolation quality and the computa-

ion efficiency when using a ghost with 2K faces. For other shapes

sed in this paper, their geometry is simpler than the centaur, 2K

aces of course are enough to cover the variation of poses and us-

ng ghost meshes for simpler shape will introduce smaller errors

s shown in Fig. 8 (b). 

Smooth shape sequence completion . Fig. 1 shows an example

f smooth shape sequence completion from 3 poses of a cactus

hape shown in the left most column, using the geodesics in

hape space [1] , the splines in shell space [2] , and our methods.

he first and third poses are created by bending the second one

n two orthogonal directions. The method in [1] shown in top

ow computes geodesic path in shape space, which is actually a

iece-wise linear curve as shown in the second column, and there

s an obvious sharp corner around the middle of the sequence

hown in the right three columns. As for the result of [2] shown

n the middle row, the sequence is much smoother, because they

se the idea of fitting spline in shell space. However, the large-

cale global optimization make it have a very bad computation

erformance. For example, they reconstruct a cactus sequence
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Fig. 7. An example of shape sequence completion from 3 poses of a centaur shape, colored in orange on the left side, using different resolutions of ghost mesh. The top row 

shows the ghost mesh with different resolutions and the bottom row shows the interpolation error with respect to the one without using ghost. (For interpretation of the 

references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. The quantitative evaluations of shape sequence completion using ghost mesh with different resolutions. (a) The KG-errors of sequences completed using different 

ghost resolutions for the shape of centaur, human, armadillo and elephant, colored in blue, pink, green and cyan respectively. (b) The average computation time (in second) 

to interpolate one shape of centaur using different ghost resolutions. (For interpretation of the references to color in this figure legend, the reader is referred to the web 

version of this article.) 
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with 170 shapes using more than 700 seconds, in sharp contrast,

we only need 24 seconds even without using ghost mesh. Because

we solve the spline fitting problem in a much more efficient way

as described in Sections 3 and 4 , and obtain nearly same results

as shown in the bottom row. Besides, due to the linearity of the

cubic spline beyond the defined time interval, we can intuitively

do extrapolations, shown in yellow colored shapes in the bottom

row of Figs. 1 –4 , which [2] can not achieve in contrast. Fig. 9

shows an example of smooth shape sequence from 10 poses of

a human shape. This figure is to demonstrate the smoothness of

sequence created by our method comparing to that in [1] and [2] .

The smoothness is evaluated by the second order derivative of

the energy in Eq. (3) . To remove the difference of using different

shape representation, we normalize these three kinds of energy by

the average deformation energy among the 10 given shapes. We

can see that, the second order derivative of the sequence created

by [1] is very large around the key-frames, which means the

transition here is not smooth similar to those in Fig. 1 . In contrast,

the second order derivatives of the sequence created by [2] and

our method are both small, which means our sequences are

much smoother, because our objective functions both require to

minimize the second order derivatives globally. 

Robustness and versatility . Fig. 3 shows an example of shape

sequence completion from 2 poses of the cactus shape used

in Fig. 1 under different boundary conditions. As described in
ection 3 , the choice of boundary conditions to determine a cubic

pline is not unique, and other boundary conditions can also be

sed instead. Here, we show the interpolation results of using nat-

ral and Hermite conditions. The natural condition sets the second

rder derivatives of the curve to zero at end points, and the Her-

ite condition is to manually assign first order derivatives to end

oints. The first order derivatives are computed by the difference

etween the first and last two shapes in the smooth sequence of

he cactus in Fig. 1 . Thus, the sequence completed here is almost

he same as those in Fig. 1 . Fig. 4 shows an example of shape

equence completion from two poses of an elephant shape of our

ethod comparing to [1] . As described in Section 4 , when given

 reference shapes, the minimizer of Eq. (3) is a geodesic in shape

pace, namely the same as those in [1] , in this case, the cubic

plines of our method degenerate to the geodesics under natural

oundary condition. Fig. 5 shows an example of shape sequence

ompleted from 5 human shapes, and the rotation of the first and

ast poses is nearly 180 degrees, that means triangles on the mesh

ay flip over during the deformation. However, benefited from

he robustness of patch-based LRI representation, our method still

orks well under such large deformations and also produces a

mooth and plausible shape sequence. Fig. 10 shows an example

f shape sequence completion from 3 poses of an armadillo with

ifferent resolutions. The given shapes are triangulated with 332K

nd 1.3 million faces. The interpolation results of different resolu-
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Fig. 9. The quantitative comparison of the smoothness of shape sequence completed using the geodesics in shape space [1] (green line), the splines in shell space [2] (blue 

dashed line), and our methods (red line). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 10. An example of shape sequence completion from 3 poses of a armadillo shape with 332K and 1.3M faces. 
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ions are nearly the same. Besides, because of the simplicity of our

ramework, we can directly conduct interpolation on shapes with

ven more than 1 million faces, which will of course fail in [2] be-

ause of memory restriction, actually they already fail when the

umber of faces is 332K. And it only costs about 40 seconds to

enerate one shape with so many faces. With the ghost mesh used,

e can cut down the computation time within about 3 seconds. 

Comparison with [2] . The method in [2] and ours both aim to

nd a smooth curve which has minimal distortion as defined in

q. (3) , but we solve the same problem with totally different so-

utions. In general, there are three main differences between our

ethod and that in [2] : (1) We use different types of shape rep-

esentation. In [2] , they embed shapes with discrete shells which

epresents shape using edge lengths, dihedral angles and areas of

riangles. However, this representation is actually not suitable for

xtrapolation, for example, extrapolating on lengths of two edges

ay result in an edge of negative length which of course not ex-

sts. And the LRI representation we used is very suitable for both

nterpolation and extrapolation as demonstrated in Figs. 1 and 4 .

esides, the reconstruction of discrete shells is usually not efficient
nough for interactive or real-time applications, because it requires

o solve a non-linear minimization using Gauss-Newton iterations,

nd when we solve for shapes in a sequence, the minimization will

epeatedly restart as a new one. However, the reconstruction of

RI coordinates is very fast, wherein we only need to solve two

inear least square systems, and Cholesky factorization can be ap-

lied once, then for other shapes in the sequence we only need

o do simple back-substitutions which is pretty fast; (2) We solve

he minimization of Eq. (1) in different ways. In [2] , they solve the

inimization via its discretized Euler-Lagrange equations which is

 K × K linear systems, where K is the number of shapes we want

o complete in the sequence. However, we solve the problem via

ubic spline fitting, which is to solve a J × J tridiagonal linear sys-

em. In the case of 4D shape sequence completion, usually J < < K .

his difference on performance can be easily found in Table 2 ,

here the time for interpolation and reconstruction of theirs in-

rease a lot when we complete a sequence of 170 shapes compar-

ng to that of 20 shapes, and ours is only slightly influenced be-

ause our solver is only dependent on the number of given shapes

nd independent on the number of shapes we want. (3) We use a
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similar but different strategy to deal with the details. In [2] , they

adopt the method in [4] , which consists of 5 steps, smoothing the

shapes, simplifying them, reconstructing new simplified meshes

using Gauss-Newton iterations, transfering the deformation of sim-

plified meshes on to the smoothed shapes, and reconstructing de-

tails on the deformed smoothed shapes using Gauss-Newton it-

erations again. However, we simplify this strategy into 3 steps,

simplifying the shapes, reconstructing new simplified meshes, and

transfering the deformation of simplified meshes onto the original

shapes, which decreases the runtime of deformation transfer, as

shown in Table 2 . The improvements on these three aspects make

our method much more efficient than that in [2] and we achieve

interactive performance as detailed in Table 1 . 

6. Conclusion and discussion 

In this paper, we have detailed an efficient 4D shape sequence

completion method. The central theme of this paper is to extend

the idea of fitting smooth curve in Euclidean space to shape space.

In particular, we proposed a different yet much more efficient way

to solve this problem via piece-wise cubic spline fitting in linear

rotation-invariant space, wherein we only need to solve a set of

small tridiagonal linear systems instead of the large-scale global

optimization. To further improve the computational efficiency, we

adopted a multi-resolution strategy, which decomposes the shape

into low-frequency and high-frequency domains, and the interpo-

lation is only conducted on the low-frequency domain and the

high-frequency details are recovered via deformation transfer tech-

niques. Benefited from the simplicity of our fitting strategy and the

efficient representation and reconstruction of patch-based LRI co-

ordinates, our method can achieve interactive performance even

when the shapes are having extremely large number of vertices

or faces. Moreover, we have also designed diverse types of experi-

ments over different kinds of shapes, which all confirmed the ad-

vantages and great potentials of our novel method. 

Limitations and future works . Despite the attractive methodology

properties of our method, it still has some limitations. The first one

is co-shared by all spline interpolation methods as that in [2] , it is

the so-called overshooting problem, an unavoidable consequence

of the smoothness requirement (see Fig. 5 in [2] ). The second one

is the control of splines in shape space. In this paper we only per-

mitted the control at the end points, the same as cubic spline in-

terpolation in Euclidean space. However, solely operating around

the end points is usually not enough for artist to create exciting

animations, more diverse types of controls and handles like those

in traditional curve or surface editing in computer aided design

could be of great value to the editing of shape sequence in the

near future. Moreover, other types of shape representation or space

reduction technique can be exploited to further improve the com-

putational efficiency or interpolating quality. For example, in [22] ,

the reduced shape space is constructed by basis derived from all

given shapes, computing a smooth curve in this low-dimensional

space for generating a smooth shape sequence maybe an interest-

ing research in the future. 
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