
Quantitative and Flexible 3D Shape Dataset Augmentation via Latent
Space Embedding and Deformation Learning

Jiarui Liua,∗, Qing Xiaa,∗, Shuai Lia,b, Aimin Haoa, Hong Qinc,∗∗

aState Key Laboratory of Virtual Reality Technology and Systems, Beihang University, Beijing 100191, China
bBeihang University Qingdao Research Institute, Qingdao 266000, China

cDepartment of Computer Science, Stony Brook University, Stony Brook 11790, USA

Abstract

Deep learning techniques for geometric processing have been gaining popularity in recent years, various
deep models (i.e., deep learning methods based on neural networks) are developed with enhanced perfor-
mance and functionality in conventional geometric tasks such as shape classification, segmentation, and
recognition. Yet, deep models would rely on large datasets for the training and testing purpose, which are
generally lacking as 3D shape geometry could not be easily acquired and/or reconstructed. In this paper,
we propose a new 3D shape dataset augmentation method by learning the deformation between shapes in
a highly reduced latent space while affording interactive control of shape generation. Specifically, we mod-
el each shape using a concise skeleton-based representation, and then we apply Gaussian Process Latent
Variable Model (GPLVM) to embed all shape skeletons into a low-dimensional latent space, where new
skeletons could be generated with diverse kinds of flexible control and/or quantitative guidance. A second
network that learns the displacement between shapes can be employed to produce new 3D shape from newly-
generated skeletons. Compared with popular computer vision techniques, our new generative method could
overcome remaining challenges of 3D shape augmentation with new characteristics. Specifically, our new
method is capable of transforming 3D shapes in a more liberal way, preserving their geometric properties
at a semantic level, and creating new shape with ease and flexible control. Extensive experiments have
exhibited the capability and flexibility of our new method in generating new shapes using only few samples.
Our shape augmentation is an effective way to simultaneously improve the shape creation capability and
the shape extrapolation accuracy, and it is also of immediate benefit to almost all deep learning tasks in
geometric modeling and processing.

Keywords: Gaussian Process Latent Variable Model, Data Augmentation, Point Clouds

1. Introduction and Motivation

Popular deep learning techniques have already exhibited their supremacy towards improving the state-
of-the-art in speech recognition, visual object detection, image classification, and many other application
domains LeCun et al. (2015). Nonetheless, deep models, for example deep neural networks, usually need
extremely large training dataset to guarantee their prediction accuracy and generalization capability. In the
field of computer vision, images are usually randomly rotated, translated, and scaled to broaden the variance
range of image datasets, thereby improving the performance of deep models Hernández-Garćıa and König
(2018). These simple augmentations applied on images heavily rely on the pixel representation where image
pixels representing colors or intensities are confined on a planar grid with canonical form. When it comes to
3D shapes, which are usually represented by point clouds or triangular meshes, simply translating or rotating

∗These two authors contribute equally to this research
∗∗Corresponding author

Email address: qin@cs.stonybrook.edu (Hong Qin)

Preprint submitted to CAGD; Special Issue of GMP 2019 March 27, 2019

shapes may not achieve the goal of increasing the variance of shapes because shapes before and after rigid
translation and rotation are actually considered to be the same in terms of geometry invariance. Thus, data
augmentation for 3D geometric shapes should comprise the augmentation of geometric information.

A feasible 3D shape augmentation algorithm should satisfy two conditions: (1) this augmentation should
be able to discover as-much-as possible shape variances along certain directions within a relative small
dataset; (2) new shapes synthesized by an augmentation algorithm should maintain semantic characteristics,
and the generating process should as well be constrained under flexible and intuitive user-controlled guidance.
One natural way to generate new shapes based on a few existing examples is shape interpolation Xu et al.
(2006); Von-Tycowicz et al. (2015); Xia et al. (2015), which interpolate certain geometric properties of shapes
and reconstruct new shapes by solving non-linear optimizations. However, these methods are usually neither
versatile nor intuitive to implement and they tend to be time-consuming in general, which is not suitable
for online augmentation during model training. Besides, point-to-point correspondences between shapes are
necessarily enforced in most cases, which is impracticable when models are created individually wherein
the order of vertices is not consistence across shapes. Another way is to synthesize shapes by recombining
pre-segmented object parts. Huang et al. (2016) explore a support-induced structural organization of object
parts, shapes are first segmented and represented as a structure based graph, then shapes are created
by substructures combination. These methods may generate shapes in a novel way, while the quality of
generated models can hardly be guaranteed. Deep learning methods, especially 3D convolutional neural
networks Wu et al. (2016); Tatarchenko et al. (2017), generate reasonable results, but the simple transfer of
2D image generation framework to 3D domain will be severely restricted by memory limitation and thereby
limit the resolution or equality of generated shapes. Moreover, these generating models are not easy to be
controlled by user guidance in a flexible yet versatile way.

In this paper we devise a novel 3D data augmentation framework by learning the deformation between
shapes in a highly reduced latent space while affording interactive and intuitive control during shape genera-
tion. Given a few shapes, a shape space spanned by these shapes can be parameterized to a low-dimensional
manifold Campbell and Kautz (2014). Thus, we first adopt concise skeleton-based graphs to represent
shapes and then use Gaussian Process Latent Variable Model (GPLVM) Lawrence (2005) to map skeleton-
represented shapes to a shared low-dimensional embedding space. This latent space embedding in a lower
dimension has two major advantages: (1) the skeleton-based representation affords input shapes without
the need of point-to-point correspondences, and could significantly reduce the shape space dimension which
allow users to explore with intuitive visual feedbacks; (2) GPLVM maps shapes from high-dimensional shape
space into a much reduced latent space and confine reasonable shapes in a low space, where flexible and
interactive controls could be applied in a most natural and intuitive manner. Then, we propose different
kinds of navigation methods in the low-dimensional (it may be noted that oftentimes 2D is enough) embed-
ding space to synthesize new graphs by simply choosing positions with low variance. Flexible user-guided
navigation is enabled by moving the shape in latent space along any user-preferred direction which can be
accurately characterized by a local principal component analysis and possible projection operator via an
attraction force. Finally, a generative network is proposed to learn the deformation process between every
two-model pair, and generate a new 3D shape from a newly produced skeleton graph. In particular, the
salient contributions of this paper can be summarized as follows:

• We pioneer a novel 3D shape dataset augmentation scheme by learning the deformation process in
a dimensionality reduced latent space, which gives rise to interactive and flexible shape generation
control.

• We propose different kinds of shape navigation strategies in dimensionality reduced latent space,
which affords flexible and quantitative user guidance for generation of new shapes in the original
high-dimensional shape space.

• We propose a novel deformation-learning network which transforms a source 3D shape to a target
shape under the guidance of a skeleton, which can produce excellent results even with small datasets.

• The 3D data augmentation framework is also of immediate benefit to other deep learning tasks in
geometric modeling and processing.

2

2. Related Works

Closely relevant to the central theme, we now briefly review previous approaches and their related
applications in two categories: manifold learning and 3D shape generation, and geometric deep learning.

2.1. Manifold Learning and 3D Shape Generation

The core of manifold learning techniques is to model data as low-dimensional manifolds. The Gaussian
Process Latent Variable Model proposed by Lawrence (2005) has proven to be powerful in manifold learning
and data prediction. Campbell and Kautz (2014) build a generative manifold of standard fonts by represent-
ing typefaces as closed curves. They take a collection of existing font files and create a low dimensional space
such that every location in this space generates a novel typeface through the interpolation and extrapolation
of these fonts. Turmukhambetov et al. (2015) use the learned manifold to provide interactive visual feedback-
s. They learn a low-dimensional manifold from the data that models the joint configuration of masses and
the contour shape of objects, which are presented by Stokes parameters and elliptical Fourier coefficients.
Manifold learning methods excel in modeling moving styles, too. Bailey et al. (2016) map high-dimensional
rig control parameters to a three-dimensional latent space. They use a particle model to move within one of
these latent spaces to automatically animate interactive characters, as well as bridges to link each pose in one
latent space that is similar to a pose in another space. Levine et al. (2012) present a technique that animates
characters performing user-specified tasks. A low-dimensional space learned from the example motions is
used to continuously control the character’s pose to accomplish the desired task. Similarly, Yin et al. (2018b)
generate closely interacting 3D pose-pairs from a set of video frames by sampling over the space of close
interactions. The sampling process starts with one or more manually designed seed 3D skeletal pose-pairs,
and the seed set is augmented via a Markov Chain Monte Carlo (MCMC). Other existing shape generation
methods either interpolate between existing shapes or exchange their parts. Alhashim et al. (2014) define
blend operations on a spatio-structural graph, fundamental topological operations including split and merge
are realized by allowing one-to-many correspondences between the source and the target. Han et al. (2015)
create new shapes by recombining existent styles and contents. They perform style and content separation to
analyze shapes by clustering their multi-scale corresponding patches and create novel shapes by style trans-
fer. Huang et al. (2016) generate new shapes by applying the derived high-level substructures to part-based
shape reshuffling between models. A bottom-up approach is presented to identify a set of basic support
substructures and combine them to form complicated substructures. Ranaweera et al. (2017) enable novice
users to work together to generate creative 3D shapes by allocating distinct parts of a shape to multiple
players who model the assigned parts in a sequence. Inspired by GP-LVM’s powerful ability of non-linear
dimension reduction, we apply it in our framework to embed all shapes into a latent space where flexible
user control of shape generation can be easily defined.

2.2. Geometric Deep Learning

Researches in deep neural networks have advanced significantly in recent years. The majority of extant
works, namely Wu et al. (2016), generate 3D objects via 3D Generative-Adversarial network by leveraging
volumetric convolution. To obtain shapes preferred by users, a joint embedding space can be learned by
autoencoder approaches. Girdhar et al. (2016) achieve this by building an architecture that has two major
components, an autoencoder that ensures the representation is generative, a convolutional network to predict
shapes from images. Chen et al. (2018) learn implicit cross-modal connections between shapes and texts
by using association and metric learning approaches, and produce a joint representation for texts and the
properties of 3D shapes. Hu et al. (2018) expand the volumetric convolutional method to a framework, which
recognize the functionality of a single voxelized 3D object and synthesizes segmented surrounds. Dai et al.
(2016) generate coarse 3D geometries and add details for those low-resolution predictions by finding neighbors
in high resolution 3D geometric shape database. These methods are limited in voxel presentation and suffers
from huge calculations. Li et al. (2017) generate new structures by introducing a novel network architecture
which recursively maps a flat, unlabeled, arbitrary part layout to a compact code using autoencoders, and
maps a code back to a full hierarchy using an associated decoder. This method yields generative models
of plausible structures, but the curve information of each part is lost, which caused the ambiguousness

3

of results. Given a picture, point clouds can be generated by estimating the depth for visible parts and
hallucinating the rest as Fan et al. (2016) does. Qi et al. (2016) come up with a novel type of neural network
that directly consumes point clouds by using symmetric functions, and Qi et al. (2017) extend the network
to a hierarchical neural network that applies PointNet recursively by partitioning the input point set into
local small points. More plausible results have come up after the propose of PointNet++. Sung et al. (2017)
synthetic novel models by jointly training embedding and retrieval networks, where the first maps parts to
a low-dimensional space and the second maps input parts to appropriate complements. Lastly, a placement
network is trained to put the complements on right places. Yin et al. (2018a) build a bidirectional net
work to learn the shape transformation process between two domain, while Achlioptas et al. (2017) perform
a thorough study of different generative networks operating on point clouds, including GANs and AEs,
especially GANs trained in the latent space learned by AEs. The limitation of those methods is that they
can neither fully control the generation process nor generate shapes in a continues way. In this paper, we
will combine traditional manifold learning method with neural network to achieve flexible and controllable
3D shape generation or namely augmentation.

Skeleton

contraction

Embedding space

Point cloud generation network

Output

Input dataset

New skeletons

Skeletons

Input point cloud

Figure 1: Our shape augmentation framework. We firstly contract the skeleton for each point cloud in our dataset, then project
all the skeletons onto a shared embedding space and explore new skeletons in this space. Finally, we use a deformation network
to transform a point cloud we have to a new shape whose pose is represented by the new generated skeleton.

3. Latent Space Embedding and Navigation

Fig. 1 shows the entire pipeline of our 3D shape augmentation framework. We firstly extract the skeleton
for each shape represented by point cloud to produce a consistent graph-based representation wherein shapes
are modeled with the same topology. Then we embed these graphs into a low-dimensional latent space using
a latent variable model, where one can explore to generate new graphs by simply choosing positions with
low variance. In this section, we will introduce the details of skeleton-based shape representation, latent
space embedding and flexible navigation.

3.1. Skeleton-based Shape Representation

As point clouds can hardly be aligned to each other, projecting high dimensional point clouds into a
low-dimensional embedding space seems intractable. Our key observation is that humans have the ability to
distinguish between shapes according to their skeletons, because skeletons contain the majority information

4

Skeleton contracted without local PCA

Skeleton contracted with local PCA
Point clouds Aligned vectors Skeletons

Figure 2: The left two octopus show skeleton contraction results with and without local PCA. The skeleton contracted with
PCA shown in second row preserves the curves of legs better. The right part shows our vector alignment procedure which maps
point clouds to consistent vectors with same length. Segmentation of skeletons and the organization of parts are indicated by
different colors.

about the differences between shapes of the same category. Based on this assumption, we consider the skele-
ton as key information of the shape and extract the skeleton for each point cloud as a concise representation
of its interior architectural feature. For each shape, we compute its skeleton via local Delaunay triangulation
and topological thinning with Laplace matrix, as is stated by Cao et al. (2010). Solving contraction problems
in a global way for models with uneven thickness may cause strange results, it struggles between contracting
skeletons of thick parts and preserving curves of thin parts. We expand the method to a dynamic local
Principal Component Analysis (PCA) version. In every step, we extract its k nearest neighbors and perform
a local PCA on them. Then we determine that a point is already lying on a curve if thier projection on one
direction covers the majority of information. Given the sorted local eigenvalue written as U , we keep the
points that already satisfy our demand stable by updating their Laplace matrix as

Mij =

{
0

maxuk∈U uk∑3
i=k uk

> α

vij − wij otherwise
, (1)

where vij is the value of the row i and column j of the degree matrix, and wij is the corresponding value
of adjacency matrix, α is an manually defined threshold. As shown in the left side of Fig. 2, the improved
method can handle with our model in a better way, the details in the dotted circle show how the octopus’
legs are better represented by curves contracted by the improved method. After contraction, a skeleton
graph is constructed by farthest-point sampling method as Cao et al. (2010) does.

The skeletons obtained above still need to be further normalized, for skeletons should be aligned into
same length to be projected onto a low-dimensional latent space, and redundant points will affect the
calculation of the distribution. To this end, we cut the graph into branches by identifying nodes whose
degree is greater than 2 as bifurcations. Then we cluster these branches according to their positions as well
as their lengths and directions. For each branch with one one-degree end point, the position is defined as the
position of the one-degree point, and for branches with two two-degree end points, the position is defined
as the middle position of the branch. The direction is determined by the first component of local PCA.
After that, branches of the same class are uniformly sampled with the same number of points, where the

5

number is chosen empirically in our experiments. We show the representation computing process in Fig. 2.
For parts with stick bones, we can further reduce the number of points by fitting bones to each part and
optimizing their joints. After that, we reorganize the skeletons into vectors of the same length. Finally, we
got 19 key points for each horse, 84 key points for each octopus, and 13 key points for each human shape.

3.2. Latent Space Embedding

For now, we have modeled the shapes with vectors of same length, then we will utilize the leverage
of Gaussian Process Latent Variable Model to learn a continuous, generative latent space. As stated by
Rasmussen and Williams (2005), GP-LVM assumes that the mapping procedure from embedding low di-
mensional space to high dimensional space is a Gaussian process, which means, inputs and outputs appear
in a continuous domain, and any discretely extracted set under the function is normally distributed. Given
aligned D dimensional vectors organized in matrix Y ∈ RN×D, our goal is to find the associated latent
variables X ∈ RN×Q, where N is the number of observations and Q is the dimensionality of latent variables,
especially, Q � D. The GP-LVM defines a generative mapping from the latent pace to observation space
that is governed by Gaussian processes. The vectors of different outputs are drawn independently from the
same Gaussian process prior which is evaluated at the inputs X, the likelihood function is written as

p(Y | X) =
N∏
n=1

p(yn | X), (2)

where yn is the n-th vector in Y , and the probability for each yn is written as

p(yn | X) = N (yn | 0, C(X,X | θ)), (3)

where C(X,X | θ) is the covariance function that maps X to Y and θ is the hyper-parameter. We can
assign every xn ∈ X a prior density given by the standard normal distribution, N (0, 1). The covariance
function is organized in a matrix where the value of row i and column j defines the covariance between two
input vectors. which is calculated by a kernel function. We choose the Radial Basis Function (RBF) kernel
as the kernel function. For every two vectors in embedding space namely xi and xj , the i-th row and j-th
column of the covariance matrix is given by

c(xi,xj | θ) = σ2
rbfexp(−

1

2
φ‖xi − xj‖2), (4)

where σrbf and φ are hyper-parameters, written as θ = [σrbf , φ]. Substituting Eq. 3 and Eq. 4 into the
likelihood function of Eq. 2, we can obtain a complex, non-linear objective function to be maximized. Then
we solve the optimization with methods introduced in Titsias and Lawrence (2010) and initialize the values
with a linear PCA reduction.

3.3. Automatic Exploration based on Principle Curve

In order to discover all possible shapes, we need ways to automatically explore and generate new shapes.
We believe the features obtained from models lie on a shared manifold, so discovering the embedding manifold
means finding all the shapes possible. Principle curves(Hastie and Stuetzle. (1989)) and principle surfaces
are believed to be one-dimensional and two-dimensional form of manifold. We perform a principle curve
extraction to obtain the underlying manifold, here we use 2D latent space for illustration. Given embedding
data X ∈ RN×Q, principle curves are curves that self-consistent and pass the middle of the data in a smooth
way. That is to say, the positions of data are distributed on both sides of the curve symmetrically. Given a
one-dimensional smooth curve parameterized over R1 written as f(λ), we seek for the curve that minimizes
the cost

Ec =

N∑
i=1

‖xi − f(λi)‖2, (5)

6

where λi is the index of xi, which is sorted by the distance from start point of the curve to the projection
point of xi, which we call the projection index. Since one point might be projected on several positions on
the curve, we define λi as the largest index of the values of the smallest projection distance in all possible
projection value τ . The definition is given as

λi = argmax{λ : ‖x− f(λ)‖ = infτ ‖x− f(τ)‖}. (6)

Theoretically, as shown in Fig. 3(a), a self-consistent curve means that for every projection index λi, the
curve lies exactly on the median of points whose projection index is λi. However, there is usually only one
point for a projection index, so we find the curve that lies on the middle of the points of their projection
index neighbors. In practice, we represent f(x) as a collection of line segments, and initialize it with the first
linear principal component of all data. The curve is calculated in an iterative way, in which we calculate
the projection index and update f(λi) as the middle position of the points whose projection index are close
to λi and repeat this step until the algorithm converges.

(a) Principal curve (b) Local direction

Figure 3: Schematic diagram of the principal curve fitted in reduced latent space (left) and the local PCA guided exploring
directions (right). The red and blue dots in (a) represent our embedding data, while black lines represents the self-consistent
characteristic of principle curve. Arrows in (b) are local coordinates(black) and the direction a user may actually want to
go(orange).

3.4. User-guided Navigation based on Local PCA

Despite the convenient of automatic exploration, we also provide user-guided navigation method to
augment the dataset in an interactive way. Assuming there is a point who always tends to discover new
shapes, a main direction is specified for user to decide whether to find shapes novel or generate shapes
that is similar to shapes in dataset. The local coordinate system is defined by preforming local principal
component analysis and the default direction is obtained by defining forces around them. As shown in the
right side of Fig. 3, given the current position in latent space, we find the point with it’s nearest neighbors
and perform a principal component analysis on them. The main direction is defined by it’s first principal
component, while the second principal component defines another. Always going through the main direction
will produce shapes similar to point clouds in dataset, while going through the direction vertical to the main
direction will go away from the manifold and generate shapes with novel features. Users can also easily
define the advance direction simply by defining the degree of deviation from the main direction.

We provide default advancing directions by defining forces on the current point in an embedding space.
When current point is moving too far from the manifold, it should be advised to go towards original points,
while when the point is too close to the path it has been explored, it should be advised to leave the path
and find something novel. Forces acting on the point includes attractive forces from original points and
repulsive forces from points on the paths. The resultant force for a point of position x̂ is defined as

Fattr = −
∑

xi∈Nnei(x̂,X)

1√
2πγ1

exp(−
‖x̂− xi‖22

2β2
1

) +
∑

pi∈Nnei(x̂,P)

1√
2πγ2

exp(−
‖x̂− pi‖22

2β2
2

), (7)

7

where P is the path consisting of positions it have passed. Nnei(x̂, X) and Nnei(x̂, P) are neighbors in
original points and neighbor points on the path, γ1, γ2, β1 and β2 are hyper-parameters. Assuming a point
is subjected to a constant force Fmain along the main direction, the recommended direction is

Fdir = Fmain + εFattr, (8)

where ε is an empirical parameters used to define how much a point is affected by its neighbors.

4. Geometry Displacement Learning for Shape Synthesis

For now, we have embed the shapes into a low-dimensional latent space and provided automatic and
manually controlled navigation methods. In this section, we will detail how to generate new shapes using
the trained GP-LVM and a shape generating network that learns the displacement between any two point
clouds during transformation.

4.1. Skeleton Construction

Generating new skeletons from latent space with our trained GP-LVM model is straightforward. We
denote trained embedding vectors as X∗ and super parameters as θ∗. Consider x̂ as our new point in
embedding space, we get the model with x̂ as[

Y
ŷ

]
∼ N

(
0,

[
C(X∗, X∗) C(X∗, x̂)
C(x̂, X∗) C(x̂, x̂)

])
. (9)

Then we got the function of output ŷ as

p(ŷ | X∗, θ∗) = N (C(x̂, X∗ | θ∗)C(X∗, X∗ | θ∗)−1Y,Σ), (10)

with the covariance Σ as

Σ = C(x̂, x̂)− C(x̂, X∗ | θ∗)C(X∗, X∗ | θ∗)−1C(x̂, X∗ | θ∗). (11)

We treat the mean value as our predicted result and the covariance Σ as the a confidence measurement for
the prediction, a lower value usually means a more reasonable result, which is shown in Section 5.

n×128 n×64 n×3

n×64

Posture recognition

Feature extraction

Displacement learning

Figure 4: Our shape generation network. Our network takes an existing point cloud and a skeleton as input, and outputs a
new point cloud with the pose indicted by the input skeleton. Each green rectangle represents a PointNet Qi et al. (2016)
block, and the whole feature extraction part is in the form of PointNet++ Qi et al. (2017)

8

4.2. 3D Point Clouds Generation for New Shapes

Now we introduce our generation network used to generate new point clouds from skeletons. While deep
learning methods struggle learning proper weights with few training data, in traditional shape generation
methods, new meshes are usually generated by combining several parts extracted from neighbors under
certain metrics, wherein the point-to-point correspondences are built and source parts are deformed and
transformed according to features of the target shapes. Is there any way that combines the advantages of
both, to generate shapes from a small dataset without part-to-part, or point-to-point correspondence? We
address this problem by changing the goal from learning the mapping between skeletons and point clouds
to learning the deformation process between every two models with a skeleton as guidance. The change
of learning target expands the training data. Given N point clouds and their corresponding skeletons,
traditional one-to-one learning networks have N pairs of training data, while, by learning the deformation
process between any two model, we use each data N time in one epoch and obtain N × N pairs of data,
which is usually sufficient for a network to learn a meaningful model.

The whole network structure is shown in Fig. 4. Our network consists of three components, feature
extraction, posture recognition and displacement learning. We utilize the strong power of PointNet Qi et al.
(2016) and PointNet++ Qi et al. (2017) in feature extraction part and posture recognition part. In feature
extraction part, the network analyzes what it is for each part and learns a feature for each point. This
part takes whole point cloud models as input and passes them into a multi-layer network. At each layer
l, we sample and group the inputs locally, and pass the features of same group into a shared multi-layer
perceptron. The learned features in each group is passed into a symmetric function that maps a set of inputs
into a vector in layer l+1. By interpolating feature vectors according to their coordinates in layer l−1, global
features are propagated back to each point. We believe that the learned features contain the local structural
information of the geometry. In the posture recognition part, key points are passed into another network
which transforms the skeletons into features that a network can understand. In displacement learning part,
skeleton features and point cloud features are concatenated and passed into three full-connected layers.
Those layers analyze and integrate the information of two parts, and end up with a vector for each point.
The deformed point clouds maintain geometric details of input point clouds and have the same posture with
input skeletons.

We organize each training data as a tuple(I,T ,S). Given input point cloud I and learned displacement
T , we obtain the deformed output model as Ŝ = I + T . To measure the distances between deformed shape
Ŝ and target shape S, we define loss functions between two point clouds. To obtain a shape that is similar
to target, we use the Chamfer’s distance as our loss function

Lchamfer(Ŝ, S) =
∑
p∈Ŝ

minq∈S ‖p− q‖22 +
∑
q∈S

minp∈Ŝ ‖p− q‖
2
2 . (12)

In order to generate point clouds with smooth surface, we use the density loss defined in Yin et al. (2018a)

Ldensity(Ŝ, S) =
1

k

∑
p∈S

k∑
i=1

∣∣∣d(p,Ni[S, p])− d(p,Ni[Ŝ, p])
∣∣∣ , (13)

where Ni[S, p] is the nearest neighbors in point cloud S of point p, and k is the number of neighbors. In
traditional deformation methods, preservation of local topology is often added as a constraint to the optimal
target equations. We add it as a transformation loss which measures the change of the distance between
every point and their neighbors before and after the transformation. This constraint guides the point to a
more correct position during the transformation instead of simply putting it to the nearest position in the
target, and therefore reduces outliers. The transformation is defined as

Ltrans(Ŝ, I) =
∑

p∈Ŝ,p′∈I

∣∣∣d(p,Rr[Ŝ, p])− d(p′, R′r[I, p
′])
∣∣∣ , (14)

where p′ is the point that is transformed to p during the deformation, R′r[I, p
′] is the neighbors on input

shape I whose distance to point p′ is smaller than a searching radius r, which is usually set as 0.02, and

9

Rr[Ŝ, p] is the corresponding points transformed from R′r[I, p
′] in shape Ŝ. The entire loss function is as

follow
Lloss(Ŝ, S) = Lchamfer(Ŝ, S) + δLdensity(Ŝ, S) + ηLtrans(Ŝ, I), (15)

where δ and η are hyper-parameters defined for training, which are usually set as 1.0 and 2.0 respectively.
Theoretically, since the deformation process is trained on every two point clouds, we can use any shape in
dataset as a template model to provide details. A KNN algorithm can also be performed according to the
common sense that deformations between similar shapes are likely to obtain better results. Since the dataset
is small, the searching process won’t be a waste of time. Considerable results are shown in Section 5.

5. Experimental Results

5.1. Data and Parameters

We demonstrate our experimental results with three categories point clouds. For each category, we
collect 3D shapes from various websites, and transform them into point clouds by uniformly sampling on
their surface using poisson disk sampling method. We have 47 horse models, 84 octopus models and 50
human models with 2048 points in each model. Shapes are normalized and moved to coordinate center.
Each of the models are zoomed and rotated to make them oriented in same direction. During navigation,
we take new points’ nearest neighbor as input point cloud.

Lower variance Higher variance

Figure 5: 2D manifold of skeletons learned for exploration and generation. The navigation path is shown in red while the
local coordinate of each point is shown in black lines. The yellow line is the direction recommended to go. The location of the
original training skeletons are shown in grey, and the color map from blue to red indicate the variance to be a reasonable 3D
shape, where blue means high variance and red means low one. Skeletons and corresponding shapes generated from paths are
shown on the side.

5.2. Shape Embedding and Shape Navigation

Fig. 5 shows an example of the manifold learnt with horse skeletons. The position of original postures in
our embedding space are shown as grey dots. We use blue and red color to indicate the value of the variance,
blue means a lower variance and a reasonable result. Variance around the original postures are lower, which
is consistent with the perception that a model is more reasonable if looks similar to the existing model.

We show the generation ability with our navigation methods. Navigation process can start from every-
where, user may either choose a particular direction or navigate in default mode. In user-guided mode, user
can choose an angle to define the degree of deviation from the main direction. In auto mode, system will
automatically choose the direction that can explore interesting things. We show our user defined navigation

10

Figure 6: Principle curves(red) in 2D manifold. We show sample points on curve as white dots and list the skeletons in the
order they appear from the left end of the curve to the right end.

method in Fig. 5 with horse dataset. We draw two navigation paths, in the left path, we use the direction
of the angle of 30 degrees from the main direction, in the right path, we use direction recommended auto-
matically by algorithms mentioned in Section 3. The navigation path is drawn in red. For each point, we
draw local coordinate in black lines and the recommended in yellow. In default mode, a point will always
explore new shapes around origin points. For a more intuitive representation of the results, we put the
new skeletons into generation network for final point clouds. New skeletons and generated horses are shown
around the embedding space.

We show our principle curves in Fig. 6 with 3 datasets. We sample 8 points in each embedding space
and display the skeletons on the right side. Skeletons generated from points sampled along the curve results
in representative results, which means the curve is the manifold we are looking for. Sampling around the
principle curve can automatically augment the dataset and generate shapes similar to what we are looking
for.

5.3. Shape Generation

In this subsection, we demonstrate our generated results with some quantitative indicators. Fig. 7 shows
some results created by our network. For each skeleton, we show results of different input shapes as guidance
and get similar outputs even when the input shapes are quite different from each other, which means the
network not only transform the shape in a simple way, but learned the semantic meaning for each point
instead. Note that the generated shapes maintained detail information as the input gives, which will be
extremely hard for those methods who generate details using skeletons only.

We also compare our methods with P2P-Net Yin et al. (2018a). We sample 2048 points for each skeleton,
and feed the skeletons and their corresponding point clouds to the P2P-NET network which works by
learning the displacement between skeletons and point clouds. As demonstrated in Fig. 8, although P2P-
NET is capable of generating coarse shapes, the points on the surface are a bit messy, while our method gives
good results with fine details and smooth surface in the same situation. We believe the undesired artifacts
of P2P-NET are caused by the limitation of small datasets with which it can hardly learn the generation
process, while our generation method learns the displacement between each two shapes with a skeleton as
guidance where the generated new shapes naturally carry details of input shapes.

We evaluate the quantitative generation performance of our method and P2P-NET on the three datasets
used above. We remind that all the training and test point clouds are normalized such that the diagonal
lengths of their bounding boxes are equal to 1. We list several metrics as below and demonstrate our results
measured with them in Table 5.3.

Point separation rate. For each point in a predicted point cloud, we search its closest point in its
neighbors and regard the distance from the nearest point as its distance to the surface of the point cloud.

11

Ground truth 1-4 GT(1) as input GT(2) as input GT(3) as input GT(4) as input

Input skeletons Ground truth 5-8 GT(5) as input GT(6) as input GT(7) as input GT(8) as input

Ground truth 9-12 GT(9) as input GT(10) as input GT(11) as input GT(12) as input

Input skeletons

Input skeletons

Figure 7: Horse, octopus and human models generated from our network. Shapes in column 3-6 are results with inputs
referenced in subscript below and skeletons in column 1.

12

Skeletons Ground truth Results of our method Results of P2PNET

Figure 8: Different models generated using our method and P2P-NET method. Since different input shapes have little effect
on the results of our method, we randomly choose one as input from dataset for each category.

If the distance between point p and its closest point is larger than 0.02, we consider p as a separated point.
We define the separation rate of predicted points as the percentage of separated points among all points
in predicted point cloud. We report the mean separation rate of all test examples in Table 5.3. Our lower
separation rate indicates that our method generates a more smoother surface.

Coverage. Defining matched point as the closest neighbor in target point clouds, we estimate the
coverage indicator for each point p as the fraction of the points in target point cloud that is matched to
points in predicted point cloud. Higher coverage score means the predicted point cloud can be represented
by target point cloud in a better way. Table 5.3 demonstrates that compared to P2P-NET, the information
contained in target shapes is better represented by our method.

Earth mover’s distance. The Earth Mover’s distance(EMD) Rubner et al. (2000) is a widely used
solution of a transportation problem which attempts to transform one set to the other. The EMD between
two point clouds S1 ⊆ R3 and S2 ⊆ R3 is defined as

dEMD(S1, S2) = minΦ:S1→S2

∑
p∈S1

(‖p− Φ(p)‖2), (16)

where Φ is a bijection map between points in two point clouds. The EMD indicates the fidelity of our
predicted model, we demonstrate that compared to P2P-NET, our method generates shapes with stable and
better fidelity.

Dataset
Separate Rate Coverage Earth Mover’s Distance

P2P-NET Ours P2P-NET Ours P2P-NET Ours
Horse 0.19% 0.07% 45.38% 69.01% 0.0573 0.0201

Octopus 0.95% 0.13% 26.60% 59.17% 0.0961 0.0231
Human 1.79% 0.11% 36.75% 66.99% 0.0870 0.0230

Table 1: Quantitative evaluation of our network with different metrics comparing to P2P-NET Yin et al. (2018a). Values in
bold indicate better results.

5.4. Data Augmentation for Specific Tasks

In this section, we show how our method can be used to improve specific training tasks under the frame-
work we introduced above and demonstrate our augmentation improvement with quantitative indicators.

13

By design, our method augments a small point cloud dataset without requesting any correspondence infor-
mation, which is convenient and sufficient for tasks such as shape classification, wherein the label of one
shape is not related to the order of shape points. Thus, to augment dataset for classification tasks, user can
simply follow the method described above to generate new shapes of the same category. Note that generated
shapes are not strictly aligned with input shapes. For example, a point on the mouth of a human shape
may not be transformed to the mouth of the target shape. This inconsistency of points between exsiting
and generated shapes is harmful for tasks such as shape segmentation and point-to-point correspondence,
wherein data augmentation is required to maintain contextual information of the dataset (for example,
augmenting datasets with segmentation labels should generate new shapes with consistent segmentation
labels). However, the tags provided in the training dataset for segmentation or correspondence can be used
to improve our augmentation method simply by defining new constraints or losses.

For example, to augment datasets tagged with segmentation labels, we can preserve the segmentation
label by constraining the deformation process within points of same labels. To this end, we define the shape
loss for tag-preserving augmentation as

L
′

chamfer(Ŝ, S) =
∑
p∈Ŝ

minq∈Tp(S) ‖p− q‖
2
2 +

∑
q∈S

minp∈Tq(Ŝ) ‖p− q‖
2
2 , (17)

where Tp(S) is the points on the shape S that have same tags with point p. To augment datasets with
point-to-point correspondences, we can simply change Tp(S) to the corresponding points. Here we show
our augmentation results for segmentation task as an example. We apply PointNet++ Qi et al. (2017)
part segmentation network to implement the shape segmentation task. Note that PointNet++ is designed
to be invariant to rigid transformation, thus our method is quite suitable in this case. We evaluate the
segmentation result with mIoU, aka average IoUs, for all part types in each category, as is used in Qi et al.
(2017). We put horse, octopus and human datasets together to train the segmentation network. For octopus
category, we choose 36 shapes from the original dataset and use 30 of them as training data. For human
and horse datasets, we choose 40 of them as training data as before. We augment each training dataset to
100 shapes. Then we train the network using datasets with and without augmentation and evaluate the
perfomance using the same testing set. Fig. 9 shows the improvements of segmentation performance using
augmented dataset compared to original training data, our augmentation method improves the performance
even when the data is nearly saturation.

96

96.5

97

97.5

98

98.5

99

Horse Octopus Human Average

m
Io

U
(%

)

Before augmentation After augmentation

Figure 9: Segmentation results before and after augmentation.

6. Discussion and Conclusion

We propose a quantitative and flexible 3D shape dataset augmentation framework, which contains a
point cloud embedding method, a flexible navigation method as well as a generative network who learns
deformation process in embedding space. Our novel idea is to contract skeletons for point clouds and

14

project them onto a shared embedding space and learn the deformation process in an embedding space.
Different kinds of navigation methods are provided for flexible control. This method requires no point-to-
point correspondence and yet is capable of generating new, high quality shapes from a small dataset. The
results presented in the previous section demonstrate the efficacy of our framework.

Despite the attractive properties of this methodology detailed in our system framework, our approach
still has some limitations that should be overcome in our future work. For the purpose of controlling the
generation process in a quantitative and flexible way, we use the skeleton-based representation and align the
parts into a same-length vector. However, the alignment method can not explore the topological variations
in a better sense, thus the method is not suitable for dataset with shapes of quite different topology, such as
tables, desks and chairs. Furthermore, the skeleton extraction step may filter out the information of details,
which is predicted automatically by our network and thus not controllable by user. In the future, we may
try to change our way of presentation to encode more structure information. Currently, our point cloud is
represented by 2048 points, which is barely sufficient for models with huge details. To generate shapes with
more details is also an issue of interest to us.

7. Acknowledgments

The work is supported by the National Natural Science Foundation of China under Grant Nos. 61672077,
61532002 and 61872347, the Applied Basic Research Program of Qingdao under Grant No. 161013xx, and
the National Science Foundation of USA under Grant Nos. IIS-1715985 and IIS-1812606.

References

Achlioptas, P., Diamanti, O., Mitliagkas, I., Guibas, L.J., 2017. Learning representations and generative models for 3d point
clouds. CoRR abs/1707.02392. URL: http://arxiv.org/abs/1707.02392, arXiv:1707.02392.

Alhashim, I., Li, H., Xu, K., Cao, J., Ma, R., Zhang, H., 2014. Topology-varying 3d shape creation via structural blending. ACM
Trans. Graph. 33, 158:1–158:10. URL: http://doi.acm.org/10.1145/2601097.2601102, doi:10.1145/2601097.2601102.

Bailey, S.W., Watt, M., O’Brien, J.F., 2016. Repurposing hand animation for interactive applications, in: Proceedings of the
ACM SIGGRAPH/Eurographics Symposium on Computer Animation, pp. 1–10. URL: http://graphics.berkeley.edu/
papers/Bailey-RHA-2016-07/.

Campbell, N.D.F., Kautz, J., 2014. Learning a manifold of fonts. ACM Trans. Graph. 33, 91:1–91:11. URL: http://doi.acm.
org/10.1145/2601097.2601212, doi:10.1145/2601097.2601212.

Cao, J., Tagliasacchi, A., Olson, M., Zhang, H., Su, Z., 2010. Point cloud skeletons via laplacian based contraction, in:
Proceedings of the 2010 Shape Modeling International Conference, IEEE Computer Society, Washington, DC, USA. pp.
187–197. URL: http://dx.doi.org/10.1109/SMI.2010.25, doi:10.1109/SMI.2010.25.

Chen, K., Choy, C.B., Savva, M., Chang, A.X., Funkhouser, T.A., Savarese, S., 2018. Text2shape: Generating shapes
from natural language by learning joint embeddings. CoRR abs/1803.08495. URL: http://arxiv.org/abs/1803.08495,
arXiv:1803.08495.

Dai, A., Qi, C.R., Nießner, M., 2016. Shape completion using 3d-encoder-predictor cnns and shape synthesis. CoRR ab-
s/1612.00101. URL: http://arxiv.org/abs/1612.00101, arXiv:1612.00101.

Fan, H., Su, H., Guibas, L.J., 2016. A point set generation network for 3d object reconstruction from a single image. CoRR
abs/1612.00603. URL: http://arxiv.org/abs/1612.00603, arXiv:1612.00603.

Girdhar, R., Fouhey, D.F., Rodriguez, M., Gupta, A., 2016. Learning a predictable and generative vector representation for
objects. CoRR abs/1603.08637. URL: http://arxiv.org/abs/1603.08637, arXiv:1603.08637.

Han, Z., Liu, Z., Han, J., Bu, S., 2015. 3d shape creation by style transfer. Vis. Comput. 31, 1147–1161. URL: http:

//dx.doi.org/10.1007/s00371-014-0999-1, doi:10.1007/s00371-014-0999-1.
Hastie, T., Stuetzle., W., 1989. Principal curves. Am. Statist. Assoc 84, 502C516. URL: https://doi.org/10.1023/A:

1026543900054.
Hernández-Garćıa, A., König, P., 2018. Do deep nets really need weight decay and dropout? arXiv preprint arXiv:1802.07042

.
Hu, R., Yan, Z., Zhang, J., van Kaick, O., Shamir, A., Zhang, H., Huang, H., 2018. Predictive and generative neural networks

for object functionality. ACM Transactions on Graphics 37, Article 151.
Huang, S., Fu, H., Wei, L., Hu, S., 2016. Support substructures: Support-induced part-level structural representation. IEEE

Transactions on Visualization and Computer Graphics 22, 2024–2036. doi:10.1109/TVCG.2015.2473845.
Lawrence, N., 2005. Probabilistic non-linear principal component analysis with gaussian process latent variable models. J.

Mach. Learn. Res. 6, 1783–1816. URL: http://dl.acm.org/citation.cfm?id=1046920.1194904.
LeCun, Y., Bengio, Y., Hinton, G., 2015. Deep learning. nature 521, 436.

15

http://arxiv.org/abs/1707.02392
http://arxiv.org/abs/1707.02392
http://doi.acm.org/10.1145/2601097.2601102
http://dx.doi.org/10.1145/2601097.2601102
http://graphics.berkeley.edu/papers/Bailey-RHA-2016-07/
http://graphics.berkeley.edu/papers/Bailey-RHA-2016-07/
http://doi.acm.org/10.1145/2601097.2601212
http://doi.acm.org/10.1145/2601097.2601212
http://dx.doi.org/10.1145/2601097.2601212
http://dx.doi.org/10.1109/SMI.2010.25
http://dx.doi.org/10.1109/SMI.2010.25
http://arxiv.org/abs/1803.08495
http://arxiv.org/abs/1803.08495
http://arxiv.org/abs/1612.00101
http://arxiv.org/abs/1612.00101
http://arxiv.org/abs/1612.00603
http://arxiv.org/abs/1612.00603
http://arxiv.org/abs/1603.08637
http://arxiv.org/abs/1603.08637
http://dx.doi.org/10.1007/s00371-014-0999-1
http://dx.doi.org/10.1007/s00371-014-0999-1
http://dx.doi.org/10.1007/s00371-014-0999-1
https://doi.org/10.1023/A:1026543900054
https://doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1109/TVCG.2015.2473845
http://dl.acm.org/citation.cfm?id=1046920.1194904

Levine, S., Wang, J.M., Haraux, A., Popović, Z., Koltun, V., 2012. Continuous character control with low-dimensional
embeddings. ACM Trans. Graph. 31, 28:1–28:10. URL: http://doi.acm.org/10.1145/2185520.2185524, doi:10.1145/
2185520.2185524.

Li, J., Xu, K., Chaudhuri, S., Yumer, E., Zhang, H., Guibas, L., 2017. Grass: Generative recursive autoencoder-
s for shape structures. ACM Trans. Graph. 36, 52:1–52:14. URL: http://doi.acm.org/10.1145/3072959.3073637,
doi:10.1145/3072959.3073637.

Qi, C.R., Su, H., Mo, K., Guibas, L.J., 2016. Pointnet: Deep learning on point sets for 3d classification and segmentation.
CoRR abs/1612.00593. URL: http://arxiv.org/abs/1612.00593, arXiv:1612.00593.

Qi, C.R., Yi, L., Su, H., Guibas, L.J., 2017. Pointnet++: Deep hierarchical feature learning on point sets in a metric space.
CoRR abs/1706.02413. URL: http://arxiv.org/abs/1706.02413, arXiv:1706.02413.

Ranaweera, W., Chilana, P., Cohen-Or, D., Zhang, H., 2017. ExquiMo: An exquisite corpse tool for co-creative 3d shape
modeling, in: International Conference on Computer-Aided Design and Computer Graphics (CAD/Graphics).

Rasmussen, C.E., Williams, C.K.I., 2005. Gaussian Processes for Machine Learning (Adaptive Computation and Machine
Learning). The MIT Press.

Rubner, Y., Tomasi, C., Guibas, L.J., 2000. The earth mover’s distance as a metric for image retrieval. Int. J. Comput. Vision
40, 99–121. URL: https://doi.org/10.1023/A:1026543900054, doi:10.1023/A:1026543900054.

Sung, M., Su, H., Kim, V.G., Chaudhuri, S., Guibas, L.J., 2017. Complementme: Weakly-supervised component suggestions
for 3d modeling. CoRR abs/1708.01841. URL: http://arxiv.org/abs/1708.01841, arXiv:1708.01841.

Tatarchenko, M., Dosovitskiy, A., Brox, T., 2017. Octree generating networks: Efficient convolutional architectures for high-
resolution 3d outputs, in: Proc. of the IEEE International Conf. on Computer Vision (ICCV), p. 8.

Titsias, M., Lawrence, N.D., 2010. Bayesian gaussian process latent variable model, in: Teh, Y.W., Titterington, M. (Eds.),
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics, PMLR, Chia Laguna Resort,
Sardinia, Italy. pp. 844–851. URL: http://proceedings.mlr.press/v9/titsias10a.html.

Turmukhambetov, D., Campbell, N.D., Goldman, D.B., Kautz, J., 2015. Interactive sketch-driven image synthesis. Comput.
Graph. Forum 34, 130–142. URL: https://doi.org/10.1111/cgf.12665, doi:10.1111/cgf.12665.

Von-Tycowicz, C., Schulz, C., Seidel, H.P., Hildebrandt, K., 2015. Real-time nonlinear shape interpolation. ACM Transactions
on Graphics (TOG) 34, 34.

Wu, J., Zhang, C., Xue, T., Freeman, B., Tenenbaum, J., 2016. Learning a probabilistic latent space of object shapes via 3d
generative-adversarial modeling, in: Advances in Neural Information Processing Systems, pp. 82–90.

Xia, Q., Li, S., Qin, H., Hao, A., 2015. Modal space subdivision for physically-plausible 4d shape sequence completion from
sparse samples. Pacific Graphics Short Papers. The Eurographics Association , 19–24.

Xu, D., Zhang, H., Wang, Q., Bao, H., 2006. Poisson shape interpolation. Graphical models 68, 268–281.
Yin, K., Huang, H., Cohen-Or, D., Zhang, H.R., 2018a. P2P-NET: bidirectional point displacement network for shape transform.

CoRR abs/1803.09263. URL: http://arxiv.org/abs/1803.09263, arXiv:1803.09263.
Yin, K., Huang, H., Ho, E.S.L., Wang, H., Komura, T., Cohen-Or, D., Zhang, R., 2018b. A sampling approach to generating

closely interacting 3d pose-pairs from 2d annotations. IEEE transactions on visualization and computer graphics .

16

http://doi.acm.org/10.1145/2185520.2185524
http://dx.doi.org/10.1145/2185520.2185524
http://dx.doi.org/10.1145/2185520.2185524
http://doi.acm.org/10.1145/3072959.3073637
http://dx.doi.org/10.1145/3072959.3073637
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1612.00593
http://arxiv.org/abs/1706.02413
http://arxiv.org/abs/1706.02413
https://doi.org/10.1023/A:1026543900054
http://dx.doi.org/10.1023/A:1026543900054
http://arxiv.org/abs/1708.01841
http://arxiv.org/abs/1708.01841
http://proceedings.mlr.press/v9/titsias10a.html
https://doi.org/10.1111/cgf.12665
http://dx.doi.org/10.1111/cgf.12665
http://arxiv.org/abs/1803.09263
http://arxiv.org/abs/1803.09263

	Introduction and Motivation
	Related Works
	Manifold Learning and 3D Shape Generation
	Geometric Deep Learning

	Latent Space Embedding and Navigation
	Skeleton-based Shape Representation
	Latent Space Embedding
	Automatic Exploration based on Principle Curve
	User-guided Navigation based on Local PCA

	Geometry Displacement Learning for Shape Synthesis
	Skeleton Construction
	3D Point Clouds Generation for New Shapes

	Experimental Results
	Data and Parameters
	Shape Embedding and Shape Navigation
	Shape Generation
	Data Augmentation for Specific Tasks

	Discussion and Conclusion
	Acknowledgments

