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Abstract. Vessel centerline extraction is fundamental for plentiful med-
ical applications. Majority of current methods require pre-segmentations,
distance maps or similar sorts of scanning whole volume action and fol-
lowed by minimal-path or skeletonization algorithms. In this paper, we
demonstrate a deep reinforced tree-traversal agent that automatically
traces tree-structure centerlines assuming no post-prune or post-merging.
It takes raw images as input and generates tree-structure centerlines nat-
urally. To this end, road mark and dynamic reward mechanisms are pro-
posed to make tree-structure vessels learnable and impart the agent how
to learn correspondingly. Besides, a multi-task discriminator is raised to
simultaneously detect bifurcations and decide terminations. We experi-
mentally show that traced centerlines have an overlap of more than 90%
and a distance less than 0.25 mm with annotated reference centerlines on
coronary arteries. Beyond the promising accuracy, the proposed method
also surpasses other existing methods by a large margin in terms of the
time and memory efficiency. And a flexible trade-off between accuracy
and time efficiency is exhibited at the inference. Codes are available at
https://github.com/LzVv123456/Deep-Reinforced-Tree-Traversal.

Keywords: Coronary artery · Centerline extraction · Reinforcement
learning · Deep learning

1 Introduction

Vessel centerline extraction is fundamental for plentiful medical applications. It
provides, beyond what segmentation and detection provide as what and where,
a more semantic representation of topology and geometry. And as a result, it
can facilitate clinical diagnosis and treatment planning.

The vessel centerline extraction problem has been studied for decades. This
line of research falls into two general categories: Two-stage methodologies and
tracing-based techniques. Majority of current approaches require segmentations,
distance maps or similar sorts of scanning whole volume action and followed by
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minimal-path or skeletonization algorithms [3–7,10,11,14,16,17,20,23]. On the
contrary, tracing based methods explore local features sequentially [1,2,4,8,18,
22,24]. In spite of speed, memory and data efficiency of tracing-based methods,
previous tracing methods lack the generalization ability and facing difficulties
in handling intricate tree structures. Most recently, Zhang et al. [22] proposed a
deep reinforcement learning (DRL) pipeline for aorta centerline tracing. Despite
the heuristic functionality of the work, it only deals with single-tubular structures
with few orientational variances. Wolterink et al. [18] and Yang et al. [21]. On
the other hand, train a local navigator with supervised learning. However, it
still needs pre-disposed seed points for tree-structure extraction and suffers fussy
centerline post-prune and post-merging.

Inspired by the sequential nature of both DRL and tree-traversal process,
we here present a Deep Reinforced Tree-traversal (DRT) agent that infers tree-
structure centerlines from a given initial point. This framework takes raw local
patches and generates tree-structured centerlines sequentially. In order to achieve
this functionality, three main challenges are addressed as listed:

– Where is the bifurcation, and when the vessel terminate? We propose a
regression-based multi-task discriminator to detect bifurcations and ter-
minations simultaneously. The discriminator essentially models distances
between the point of interest and its nearest bifurcation and reference point.

– In what order should the agent tracing at bifurcations? We leverage the
agent to decide for itself. However, during the training phase, we propose
the dynamic reward mechanism to best support and supervise the agent’s
choice. Specifically, we observe the agent for several steps once meeting a
bifurcation, and then we match the path that the agent walks against all the
candidate branches. Finally, the best-matched branch wins for the subsequent
reward supervision.

– How to ensure the agent backtrack different branches? This problem is critical
to keep the agent away from trapping in the endless loop. To this end, we come
up the road mark mechanism to remind the agent of trajectories already
passed and serving as a navigation map implicitly.

To evaluate the proposed framework, a dataset contains 280 cardiac CTA
images from multiple clinical institutes is collected. Masks of coronary arter-
ies are annotated by experts and centerlines are calculated according to masks
followed by manual refinements. In general, our framework surpasses three repro-
duced baselines (detailed in experiments) by achieving more than 90% overlap
rate with less than 0.25 mm average distances referencing ground-truth center-
lines. Beyond the promising accuracy, our framework also outperforms all base-
lines by a large margin in terms of time and memory efficiency. Extensive ablation
studies are further conducted to substantiate proposed innovations.

2 Methods

The centerline tracing process can be viewed as a sequential decision-making
process that satisfies the finite Markov Decision Process (MDP) and thus can be
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Fig. 1. The general workflow for tree-structured centerline traversal. The red dashed
block contains sequential tracing process within a branch and the green dashed block
illustrates backtrack routine among separate branches. (Color figure online)

fitted into a standard RL pattern. Then the best policy q∗(s, a) can be approxi-
mated by training parameterized network q(s, a, θ) to minimize:

L = (rt+1 + γ max
a′

q(st+1, a
′, θ−) − q(st, a, θ))2 (1)

where θ and θ− parameterize target network and policy network correspond-
ingly [12]. In our case, state s is a 3D local patch cropped at a given point p,
action a is sampled from the action space A which is N orientations uniformly
distributed on a sphere. At each time step, the agent move from current point pt

to pt+1 according to action at with pre-defined step-size. Once the current tra-
jectory finished, collected points {p0, p1, . . . , pt} will be deemed as the centerline.
In the view of tree structures, we perform tree traversal process as illustrated
in Fig. 1. The general process is analog to a depth-first traversal. Despite this
intuitive formation, multiple obstacles need to be addressed, and we will plumb
these challenges in the following parts of this section.
Reward Design. The goal, trace centerline, here can be further decomposed
into two sub-goals: (1) trace along the correct direction; (2) trace as close as
possible along reference centerlines; Here we propose a target that merges two
subgoals into one by directly pulling current proposed centerline point pt to next
target reference point gt+k. Figure 2 provides a straight forward view of how
reward mechanism works (k in Fig. 2 is set to 1 for the sake of interpretation).
Given a current proposed point pt, a corresponding reference point gt is paired
by finding closest point in Euclidean space from the reference centerline. Then
the target reference point gt+k is selected from reference centerline sequence with
index t + k. Then a scalar trend T defined as:

T = ‖v1‖2 − ‖v2‖2 (2)

is used to evaluate the pulling action. If T > 0, then pt+1 is getting closer to gt+k

comparing with pt. Otherwise, it’s being pushed away. This scalar T implicitly
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Fig. 2. A straight forward view of reward design. The goal of reward is to encourage
the pulling action that pulls current point pt to objective reference point gt+1.

convey the goodness of the sampled orientation. Depending on the trend, the
reward is designed as:

R =

{
T

2‖xt‖2
+ A if T > 0.

0 otherwise.
(3)

A is an auxiliary signal employed to encourage proposed point to stay around
the reference centerline. Explicit expression for A is: A = 1

1+e−x where x is point
to curve distance defined as L2 distance from pt+1 to it’s nearest reference point.
Road Mark. Considering the single vessel situation where only a single tubular
structure exists. The main challenge emerges as ambiguous orientation informa-
tion. The vessel centerline can be viewed as a directed curve from the proximal
point to the distal point. Under a tracing framework, global information is com-
monly not available, and the local patch can have a similar appearance towards
both proximal and distal directions. This will cause conflicts during training and
potentially cause ‘look back’ or even ‘stay around’ during inference. Regarding
tree structures at the inference process, the agent will trace the identical branch
due to its deterministic essence unless manual interventions are imposed. Here,
we propose a simple yet effective solution, namely road mark, for both scenar-
ios. As indicated by the name and showed in Fig. 3, a distinctive mark (a cube
with size n and value c in our setting) is left to the raw environment where the
agent has passed. By doing so, we transfer the directional and ordinal informa-
tion into visual features that can be directly encoded into the neural network.
The road mark prevents the agent from hesitation as well as indicating tracing
order at bifurcations.
Dynamic Reward. With the assistance of the road mark, the topological infor-
mation can be reconstructed by purely learning local patches. Nevertheless, it is
still an open question on how to learn at bifurcations. Specifically, in what order
should the agent trace at bifurcations. We speculate that any hand-crafted rules
can lead to sub-optimum. Based on this conjecture, we propose the dynamic
reward mechanism to leverage the agent itself to decide the tracing order dur-
ing training. A buffer zone equaling to Z time steps is created when reaching a
bifurcation. Then accumulated rewards Rn =

∑Z
i=1 ri within Z continuous time

steps according to all N potential candidates are collected. And the candidate
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Fig. 3. Left side and right side of the figure displays a real environment with and with-
out the road mark correspondingly. Road marks in the vessel served as the orientation
indicator.

with index equal to argmax(R0, R1, . . . , RN−1) is set as the reference centerline.
Once a reference centerline is decided, other candidates will be ignored and get
back to single vessel mode. Within the buffer zone range, the agent is always
awarded the largest reward regardless of which candidates it relies on. When the
agent backtracks to the same bifurcation, the reference centerline already used
will be disregarded from the candidate pool, then the same strategy is executed
again. This mechanism provides a dynamic control over rewards and reference
centerline at bifurcation during the training.
Multi-task Discriminator. Herein, a multi-task discriminator is trained
separately to regress distances from a point to it’s nearest bifurcation and ref-
erence point simultaneously. The training data is generated by random sam-
pling points from reference centerlines with jittering (a 3D Gaussian distribution
parameterized by μ = 0, σ = 10 is used for jittering). Two ground truth scalars
for each training point are decided using an identical formula:

G =

{
e
a(1− D(x)

dM
) − 1 if D(x) < dM .

0 otherwise.
(4)

proposed by Sironi et al. [15]. D(x) is the L2 distance between the sampled point
x and it’s target point. a is set to 6 as explored in the original paper and dM is
set to half of the patch size. Then a weighed MSE loss defined as: L = L1

2 + L2
2

is minimized. During the inference, the discriminator slides together with the
agent along the vessel and a window of passed proximity values are maintained.
Then the local maximums are extracted immediately as bifurcations and the
termination will be triggered if the average value of the corresponding proximity
map exceeds certain threshold T which means the current location is no longer
close to any reasonable reference centerline.
Train and Inference. The tracing agent is trained episodically. Within an
episode, the 3D volumetric image and centerlines formed as directed graphs are
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collected. The agent is initialized around the root of the tree structure and train-
ing by conducting tracing. Once the agent successfully reaches a bifurcation, it
will act according to the dynamic reward mechanism and activate this bifurca-
tion. The current trajectory terminates if one of the following criteria satisfied:
(1) reach a distal point; (2) go out of the safe range; (3) reach predefined maxi-
mum steps; Once a trajectory is ended, the agent will backtrack from an activated
bifurcation and deactivate this bifurcation once there is no trainable candidate
branch. The whole episode ends until there is no existing activated bifurcation.
During inference, given a root point, the agent has already equipped with the
knowledge on how to trace and in what order to trace. Noticing that the dis-
criminator is trained independently and no road mark mechanism is applied for
the discriminator. So we also maintain a clear environment for the discriminator
during inference.

Fig. 4. Centerlines are displayed using scatters and all results remain their original
appearance without post-processing. Tiny green points in our methods are bifurca-
tions detected and two larger purple points are ostium location. According to this
visualization result, our method achieved better completeness and acting less prone to
over-tracing. (Color figure online)

3 Experiments and Results

Dataset. We collect a cardiac CTA dataset that contains 280 patients from 4
clinical institutions. Most of these patients contain a certain degree of stenosis
and plaques. And masks of all feasible coronary arteries are deliberately anno-
tated by experts, and centerlines are extracted using TEASAR [13]. Further-
more, centerlines extracted are scrutinized and manually refined. All centerlines
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are formed as directed acyclic graph (DAG) for the final input. In experiments,
images are resampled isotropically to spacing 0.5 mm, and intensities are nor-
malized between 0 and 1. The whole dataset is randomly split into 140 training
and 140 validation.

Table 1. Comparison of proposed method against three baselines with respect to
metrics of both accuracy and efficiency. Our method surpasses three baselines in terms
of both accuracy and efficiency.

Method Overlap (%) Distance (mm) Time cost (s)

Max Min Average Max Min Average Max Min Average

MSCAR-DBT+

skeletonization

96.41 47.68 81.66 0.4193 0.2865 0.3437 26.32 14.01 20.12

CNN+Min-Path 97.46 74.78 89.29 0.3102 0.2055 0.2608 25.50 18.84 21.93

CNN Tracker 98.79 42.78 89.18 0.357 0.2266 0.2929 59.9 7.89 28.40

Ours 100.00 54.93 90.05 0.3478 0.1966 0.2491 30.48 4.32 13.11

Metric. We evaluate the result of each patient in two aspects: overlap (a
combination of point-level precision and recall) and distance , similar to what
is used in Zhang et al. [22]. Given two sets of 3D points, one for reference
centerline and another for traced centerline (Both centerlines are resampled to
0.025 mm for an accurate calculation). The corresponding point for a given point
is defined as the nearest point on the opposite set. A point is covered if Euclidean
distance between it and its corresponding point is less than threshold Hm (we
set Hm = 1 mm across all experiments) and missed otherwise.

Formally, if a reference point is covered, we marked it as Rt and Rf otherwise.
Similarly, a traced point will be marked as Tt or Tf regarding the case. With
||.|| denoting the cardinality of the set of points, the overlap is defined as:

α
‖Tt‖

‖Tt‖ + ‖Tf‖ + (1 − α)
‖Rt‖

‖Rt‖ + ‖Rf‖ (5)

As for distance, Dr is defined as average Euclidean distance between matched
points in reference and their corresponding traced points. And Dt is defined
analogously with reversed direction. Then the distance is defined as: αDr +(1−
α)Dt. α is set to 0.5 for both metrics.
Coronary Artery Centerline Extraction. Herein, three methods range from
pure traditional methods to solo deep learning methods are reproduced as base-
lines. We first reproduced SOTA tracing method CNN Tracker [18]. Since
we do not assume the acquisition of vessel radius, all radius-related parame-
ters are set to 1mm. Other parameters remained the same as the original work.
The second baseline is a combination of CNN segmentation with minimal path
extraction (CNN+Min-Path). Two segmentation models from coarse to fine
are trained according to Xia et al. [19] with our annotated coronary artery
masks. Then centerlines are extracted from a fine-grained segmentation mask
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using a TEASAR [13] algorithm. At last, we also reproduced a traditional cen-
terline extraction method (MSCAR-DBT+skeletonization), coronary artery
masks are extracted according to MSCAR-DBT [24] and centerlines are acquired
through skeletonization operation [9]. The architecture used in our work is the
same as what was proposed in the CNN Tracker to perform an impartial compar-
ison. Ostium locations are provided for both CNN Tracker and our method for
the sake of justice. As displayed in Table 1, Our methods surpass all baselines
in terms of both accuracy and efficiency. CNN Tracker failed to track several
sub-branches, and it is prone to over-tracing. CNN+Min-Path suffers from seg-
mentation errors and shortcuts caused by the minimal path. And traditional
method falls behind in general due to its weak generalization ability. Figure 4
visualizes three cases. Step-size at inference can be set arbitrarily within a rea-
sonable range regardless of training step-size. Here we measure step-size from
0.5 to 2.0. As shown in Table 2, there is a trade-off between speed and qual-
ity. According to experiments, step-size equaling to 1.0 generates the highest
cost performance. It only takes around 5 s for each patient with little damage in
accuracy.

Table 2. Detail results for differ-
ent step-size.

Step-size Average

overlap

(%)

Average

distance

(mm)

Average

time cost

(s)

0.5 90.05 0.2491 13.11

0.6 89.64 0.2511 10.52

0.7 89.44 0.2549 9.76

0.8 89.58 0.2574 7.11

0.9 89.19 0.2638 6.06

1.0 89.36 0.2673 5.68

1.1 89.38 0.2758 5.57

1.2 89.39 0.2830 5.16

1.3 88.49 0.2884 4.55

1.4 87.63 0.2947 4.16

1.5 88.03 0.3021 4.05

1.6 86.31 0.3092 3.57

1.7 86.57 0.3175 3.39

1.8 85.82 0.3246 3.01

1.9 84.48 0.3328 2.72

2.0 83.54 0.3433 2.49

Table 3. Road mark combined with
dynamic reward outperform all other
combinations.

Variations Average

overlap

(%)

Average

distance

(mm)

No-

mark+random

60.59 0.3443

No-mark+order 62.67 0.3135

No-mark+angle 63.54 0.3102

No-

mark+dynamic

61.07 0.3029

Mark+random 76.41 0.3160

Mark+order 89.05 0.2632

Mark+angle 92.86 0.2482

Mark+dynamic 93.74 0.2447

Ablation Studies. We demonstrate the effectiveness of the road mark and
dynamic reward mechanism in this section. Ground truth bifurcations and termi-
nations are provided across ablation studies to avoid perturbation caused by the
discriminator. 8 variations are implemented to interpret road mark and dynamic
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reward, mark and no-mark represents whether utilize road mark or not. Four
different training modes at bifurcations are disposed: (1) randomly select a sub-
branch at bifurcations (random); (2) always choose the sub-branch with least
accumulated x coordinate values (order); (3) always choose the sub-branch with
the least angle referencing it’s father-branch (angle); (4) our dynamic reward
mode (dynamic). As showed in Table 3, road mark enabled tree structure trac-
ing. According to our off-line visualization results, the agent will always trace the
same path and sometimes traces loops without a road mark. Dynamic reward
surpassed all three other manually designed training modes. The most allied
results came from the angle mode, which also satisfies the common intuition.

4 Conclusion and Future Work

This work presents a novel framework for tree-structure vessel centerline tracing
and demonstrates promising results on coronary artery centerline extraction.
Unlike other existing learning-based methods. This framework is designed and
boosted to consume DAG and infer the tree-structure naturally. However, due to
the sequential tracing nature, its advantage in efficiency will degrade confronting
non-sparse environments. For future improvement, it will be more elegant and
efficient to further merge the agent with the discriminator.
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