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Abstract— Automatic and accurate 3D cardiac image
segmentation plays a crucial role in cardiac disease diag-
nosis and treatment. Even though CNN based techniques
have achieved great success in medical image segmenta-
tion, the expensive annotation, large memory consumption,
and insufficient generalization ability still pose challenges
to their application in clinical practice, especially in the
case of 3D segmentation from high-resolution and large-
dimension volumetric imaging. In this paper, we propose a
few-shot learning framework by combining ideas of semi-
supervised learning and self-training for whole heart seg-
mentation and achieve promising accuracy with a Dice
score of 0.890 and a Hausdorff distance of 18.539 mm with
only four labeled data for training. When more labeled data
provided, the model can generalize better across institu-
tions. The key to success lies in the selection and evo-
lution of high-quality pseudo labels in cascaded learning.
A shape-constrained network is built to assess the quality
of pseudo labels, and the self-training stages with alterna-
tive global-local perspectives are employed to improve the
pseudo labels. We evaluate our method on the CTA dataset
of the MM-WHS 2017 Challenge and a larger multi-center
dataset. In the experiments, our method outperforms the
state-of-the-art methods significantly and has great gener-
alization ability on the unseen data. We also demonstrate,
by a study of two 4D (3D+T) CTA data, the potential of our
method to be applied in clinical practice.

Index Terms— whole heart segmentation, pseudo label,
quality assessment, self-training, semi-supervised

I. INTRODUCTION

CArdiovascular disease (CVD) is still the leading global
cause of death, and heart disease remains the number
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one cause of death in the US [1]. A comprehensive analysis
of patient-specific cardiac structure and motion is fundamen-
tal for understanding cardiac function, early detection, and
accurate treatment of CVDs. There are different noninvasive
imaging technologies used for understanding and diagnostic
purposes in cardiology [2], such as computed tomography
(CT), magnetic resonance imaging (MRI), and ultrasound
(US). Among these imaging modalities, cardiac CT is fast,
low cost, and generally of high quality [3]. Based on the high-
resolution CT scan, a 3D model of the whole heart can be built
for quantitative analysis. Furthermore, a 4D (3D+T) CT can
be used for 3D motion and strain analysis to provide intuitive
information about heart function by visualization.

Accurate heart segmentation from an image is a prerequisite
for the construction of a 3D or 4D heart model. In the task of
whole heart segmentation (WHS), each of the individual heart
substructures, including the left ventricle (LV), right ventricle
(RV), left atrium (LA), right atrium (RA), the myocardium
of LV (MYO), ascending aorta (AO) or the whole aorta, and
the pulmonary artery (PA), needs to be extracted from volu-
metric images [4]. Although manual delineation can provide
accurate labels, it requires professional domain knowledge and
is laborious and time-consuming due to the large variations
in the shape of the heart, low contrast between different
substructures, and a lot of 2D slices in a 3D image. It can take
hours to label a whole heart [5]. Therefore, automatic solutions
for efficient cardiac segmentation are desired. Zhuang et
al. [4] provided a benchmark in the Multi-Modality Whole
Heart Segmentation Challenge (MM-WHS)1 for researchers
to compare their WHS methods using the same dataset, where
most of the top-ranked methods are based on Convolutional
Neural Networks (CNNs).

Despite the advances in deep learning techniques and many
successful applications for medical images [6], [7], there are
still some open challenges to address when adopting 3D
CNNs in clinical practice. The first challenge is the limited
number of training samples. Due to availability, cost of manual
annotation, and privacy issues, it is usually difficult to collect
enough training data, especially for 3D images, to cover the
variances across subjects and imaging acquisitions. As a result,
it is very likely to obtain a small set of labeled examples in

1https://zmiclab.github.io/projects/mmwhs/
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many applications, especially at the early stages or for rare
diseases [8]. Learning a robust model from a few labeled
data is very challenging but valuable for those use cases with
difficulties in data and annotation collection, and meaningful in
some preliminary studies with limited resources. Another prac-
tical challenge is the GPU memory limitation for 3D CNNs. In
order to fully utilize 3D information in CT images, 3D CNN is
a more straightforward choice than 2D CNNs. However, it is
not trivial to directly use 3D CNNs for segmentation because
of the huge memory requirements of the intermediate feature
maps for a 3D input. Downsampling the input or cropping sub-
volumes are two commonly used strategies for training a 3D
CNN on large images. The downsampling operations sacrifice
accuracy along boundaries, while the cropping strategies have
limited observation of global information and thus may lead
to inconsistency across sub-volumes.

To overcome the above-mentioned challenges and limita-
tions, we propose a few-shot learning framework by combining
ideas of semi-supervised learning and self-training. In our
framework, we first adopt a teacher-student model in the initial
semi-supervised learning stage and obtain pseudo labels for
unlabeled data. In order to select reliable pseudo labels for
the next learning stage, a shape-constrained network is built
to estimate their qualities. Then, we design a self-training
method to update pseudo labels and the segmentation model by
using downsampling and cropping strategies alternately, which
can make good use of the complementary global and local
perspectives to avoid accumulative bias.

We evaluate our method on the CTA (CT angiography)
dataset of MM-WHS 2017 Challenge, which includes 20
labeled CT data in the training set and 40 unlabeled samples
in the testing set. With the help of more unlabeled data,
our method can achieve fully automatic WHS with a Dice
Coefficient of 0.917, a Jaccard of 0.848, and a Hausdorff
Distance of 15.709 mm on the 40 testing images in the
challenge, which outperforms the state-of-the-art methods with
distinct improvements. More importantly, our method is able
to achieve comparable performance even with very few labeled
data and obtain satisfying results on unseen data acquired from
different sources. In addition, we apply the proposed method
to two 4D (3D+T) CTA data and demonstrate its potential
in clinical practice by quantitatively evaluating the cardiac
functionality via the time-varying volume of LV and accurate
Ejection Fraction.

The main contributions of this paper include: (1) an easy-
to-implement few-shot learning method by combining mean
teacher model and self-training in a cascaded framework;
(2) an effective shape-constrained network to estimate the
quality of pseudo-labels; (3) a flexible integration of global
and local perspectives for high-resolution 3D data by using
downsampling and cropping strategies in an alternative way;
(4) quantitative validation on a challenge dataset and qualita-
tive evaluation on a private multi-center dataset.

The rest of the paper is organized as follows. Section II
introduces some related work. Section III provides details of
the proposed method. Section IV reports the experimental
settings and results, followed by discussions. We conclude this
work in Section V.

II. RELATED WORK

A. Semi-supervised image segmentation

In the computer vision domain, there are many semi-
supervised methods (e.g., [9], [10]) and self-training ap-
proaches (e.g., [11]). For example, Xie et al. [11] proposed
a self-training framework with a noisy student to improve
the ImageNet classification. Recently, some semi-supervised
methods have been applied for medical image analysis. Bai et
al. [12] proposed a self-training based method for cardiac MR
image segmentation. They updated the network parameters
and pseudo labels of unlabeled data in an alternative way.
The pseudo labels of unlabeled data are predicted by the
network and post-processed by a conditional random field
(CRF). Li et al. [13] used a self-training method to refine the
target model iteratively by learning from previous predictions
of unlabeled data to detect cells in histopathological images.
Besides pseudo-label guided methods, Baur et al. [14] utilized
manifold embedding to minimize the feature distance between
labeled and unlabeled samples. Cui et al. [15] and Li et al. [16]
adapted a mean teacher model [17] for their segmentation
tasks by using a consistency loss to minimize the difference
between a teacher model and a student model for unlabeled
data. Some other methods use an adversarial loss to let the
segmentation model learn from a discriminator for unlabeled
data [18], [19]. No matter how the predictions of unlabeled
data are used in different approaches, the noisy labels in the
prediction are inevitable and thus affect the training process.

To better utilize the noisy prediction of unlabeled data,
some studies have been exploring the certainty or confidence
estimation. Zou et al. [20] used a hyper-parameter to control
class-balanced pseudo-label selection to determine the most
confident samples in each class for robust self-training. Then,
they proposed two types of regularization to further improve
the confidence guided self-training [21]. Lately, Yu et al. [22]
utilized an uncertainty-aware consistency loss to estimate
voxel-level uncertainty in the teacher model predictions and
let the student model only learn from the confident voxels.
Nie et al. [23] designed an attention mechanism by using an
adversarial network to learn the confidence map.

Despite the great achievements of semi-supervised methods,
only very few data are available in many cases, especially
for medical applications. Therefore, few-shot learning (FSL)
methods are attracting more attention recently, which can
generalize to a task containing only a few labeled samples
by using some prior knowledge [24], [25]. There are many
different ways of utilizing prior knowledge, for example,
by adopting a pre-trained model learned from other larger
datasets. In computer vision, most FSL works focus on classi-
fication tasks. So far, only a few studies have investigated the
FSL for medical image segmentation. Dietlmeiera et al. [26]
leveraged convolutional features from a pre-trained VGG-16
network to train a binary gradient boosting classifier from
two 1728×2022 images to classify cell pixels in electron
microscopy images. However, a pre-trained model is generally
unavailable for MRI or CT scans. Mondal et al. [27] pro-
posed a method based on Generative Adversarial Networks
(GANs) to segment the brain in 3D multi-modal MRI with
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only 1 or 2 labeled samples and some unlabeled images.
Zhao et al. [28] presented a learning-based data augmentation
method for synthesizing labeled medical images from only a
single labeled data and 100 unlabeled samples, and trained
a supervised model with these generated examples for brain
MRI segmentation. Roy et al. [29] proposed a novel few-
shot framework to segment multiple organs in volumetric CT
images, which can incorporate strong interactions at multiple
locations to ease the training of the segmenter without the
need for any pre-trained model.

Inspired by these previous works, we propose our cascaded
learning framework by combining the mean teacher model
and self-training. Since boundaries and spatial information are
vital for multi-label segmentation tasks, we design a shape-
constrained network to estimate the pseudo label quality on
the subject level instead of the voxel level to help in learning
a robust model from only a few labeled data.

B. CNN-based 3D cardiac segmentation
Among those deep learning-based methods for cardiac

segmentation, most are designed for ventricle segmentation,
especially in MR and ultrasound domains [30]. In this work,
we focus on WHS for 3D CTA images. In order to fully utilize
3D information in 3D image segmentation tasks with limited
GPU memory, different approaches have been presented. In
some work, downsampling and cropping techniques are used
for 3D CNNs, and other work use multi-view 2D CNNs
and different fusion strategies to combine complementary
information from different views, which is also called 2.5D
segmentation.

To name a few approaches using downsampling, Payer
et al. [31] proposed a two-step segmentation framework by
using a localization CNN in coarse resolution and a seg-
mentation CNN to segment the fine details in the detected
small region of interest (ROI). Their method achieved the
best performance on the CT segmentation task in the MM-
WHS 2017 challenge. Tong et al. [32] used a similar two-
step approach and extracted multi-modality features by fusing
MRI and CTA images. Isensee et al. [33] also used a similar
cascade U-Net in their segmentation framework and achieved
promising performances for different segmentation tasks in
the Medical Segmentation Decathlon challenge2. In summary,
downsampling strategies need some kind of refinement as extra
steps to further smooth the high-resolution boundaries.

Another representative solution is to train networks by
using cropped sub-volumes [34], [35], and then merge the
predictions via some fusion strategies. For example, Yang et
al. [36], [37] used random cropped patches to train the 3D fully
convolutional network (FCN) and adopted sliding window and
overlap-tiling stitching strategies to generate predictions for
the whole heart volume.

Besides, Wang and Smedby [38] proposed a way to combine
three orthogonal 2D U-Nets for 2.5D segmentation and refine
the segmentation by a shape context estimation. Similarly,
Mortazi et al. [39] used an adaptive fusion strategy to com-
bine the probability maps of multi-object multi-planar CNNs.

2http://medicaldecathlon.com/

Zheng et al. [40] proposed a heterogeneous feature aggregation
network to exploit complementary information from multiple
views of 3D cardiac data by using asymmetrical 3D kernels.

In this work, we utilize both cropping and downsampling
strategies in the cascaded learning to explore complementary
information in different levels of receptive field and resolution.

C. Shape prior for segmentation
In many applications, incorporating prior information about

anatomies are useful to improve the performance of image seg-
mentation algorithms as summarized in a recent survey [41].
Shape prior, one of the many forms of prior information,
provides a powerful semantic description for targeted objects
in an image. In the WHS task, the shape of the heart and its
substructures can vary from one subject to another or even over
time. Many statistical models have been proposed to capture
the intra-class variation of shapes, for example, active shape
models [42], [43], sparse shape composition [44]–[46], and so
on. Some recent methods [47], [48] have tried to incorporate
shape priors into segmentation networks in supervised learning
to encourage the prediction to be similar to the learned shape
and ground truth. Dalca et al. [49] proposed a way of learning
anatomical priors from unpaired segmentation images for
unsupervised segmentation. In this paper, we designed an auto-
encoder network to learn shape priors for the sake of pseudo
label selection in a semi-supervised learning framework.

III. METHODS

The proposed cascaded learning framework for WHS is
illustrated in Fig. 1 and summarized in Algorithm 1. It consists
of three learning stages (R = 3), shown as three gray blocks
(from top to bottom) on the left side of Fig. 1. The inputs
to the first learning stage include labeled and unlabeled data.
Because the number of labeled data is so limited, we use a
semi-supervised learning network, specifically a mean teacher
model [17], to utilize the unlabeled data in this initial stage.
Note that conventional self-training methods generally learn an
initial model from labeled data only (e.g., [11]). Since learning
a deep network from a small dataset can lead to the over-fitting
problem, the initial semi-supervised learning stage should be
a better choice, which is validated in our experiments. The
learned initial model is then used to generate pseudo labels
for the unlabeled data. To estimate the quality of pseudo
labels and control how the pseudo labels are used in later
self-training stages, we train an auto-encoder network to learn
shape priors and to measure the similarity between a prediction
and its shape-constrained reconstruction, shown in the right
block of Fig. 1. In the second and third self-training stages,
the inputs are labeled data, unlabeled data with pseudo labels.
We utilize both high-quality and low-quality pseudo labels in
self-training, but with different weights to train a new model.
Notably, the second and third stages are different, because we
employ different downsampling and cropping strategies on the
input to avoid an accumulation of segmentation bias. During
self-training (two rounds in Fig. 1), the quality of pseudo labels
becomes better, and the unlabeled data with better pseudo
labels can help to learn a more general segmentation model.
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Fig. 1: The proposed few-shot learning framework for WHS. The three-stage learning process is illustrated as three blocks on
the left side: initial learning stage (init-crop), and two self-training stages by using downsampled inputs (self-down) and cropped
inputs (self-crop), respectively. The shape-constrained network on the right side aims to estimate the quality of pseudo labels
of unlabeled data between learning stages. The selected high-quality pseudo labels are treated the same as the ground-truth
labels with higher learning weight than the low-quality ones in the next stage. Different color maps are used for 3D heart
models of various meanings, i.e., the ground truth of labeled data and the predictions or pseudo labels of the unlabeled data.

The proposed framework provides a semi-supervised solu-
tion not only to WHS in CTA. It is robust when only a few
labeled data are available. The number of learning stages and
labeled data could be different for different use cases. We
suggest the maximum number of learning stages, R, to be an
odd number and at least three. It is because that ending with
the local-detail learning stage can provide finer boundaries in
prediction. Without loss of generality, the method is presented
for WHS by using three learning stages in the few-shot context
in this paper. The details of our framework are described in
the following subsections.

A. Initial Semi-supervised Learning

In the beginning, we utilize mean-teacher architecture,
a semi-supervised learning method, as the initial stage to
start the following self-training. Mean teacher [17] is a self-
ensembling method to effectively take advantage of unlabeled
data to alleviate the limitation of a small number of labeled
data. There are two models in the mean-teacher framework,
serving roles as student and teacher, respectively. The network
parameters of the student model are updated by gradient
descent while the parameters of the teacher model are updated
as an exponential moving average (EMA) of the student’s
parameters. The goal of the mean-teacher model is to minimize

the following objective function:

min
θ

N∑
i=1

Lce(f(xi; θ), yi) + λ

N+M∑
i=1

Lmse(f(xi; θ), f(x̂i; θ̂)),

(1)
where N and M are the number of labeled data and unlabeled
data (assuming N << M ), respectively. Lce denotes cross-
entropy loss, and Lmse represents mean square error loss. The
input of the teacher model, x̂i, is a permuted version of xi
for the student model by adding Gaussian noise. θ̂ represents
the parameters of the teacher model, which is the EMA
of the student model’s parameters θ. Besides the parameter
values, both teacher model and student model share the same
network architecture, and thus the operations are the same.
This objective function consists of two main parts. The first
term is a segmentation loss from the ground-truth labels, yi,
of the labeled data only. The second one is a consistency loss
from the targets obtained from the teacher model for all data.
After training, we use the teacher model to infer segmentation
results as pseudo labels for the unlabeled data and then use
them to supervise the subsequent self-training stages after
pseudo label selection.

Considering the memory limitation for high-resolution 3D
image volume, we need to train the network by using ei-
ther downsampled input or cropped sub-volumes. Generally
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Algorithm 1: Cascaded learning of WHS
Input: Labeled data {(x1, y1), ..., (xN , yN )},

unlabeled data {xN+1, ..., xN+M}
I. Learn an initial semi-supervised model θ0 from both

labeled and unlabeled data by optimizing Eq. 1 and
using randomly cropped sub-volumes of xi as input;

II. Learn a shape-constrained model θsc according to
Algorithm 2;
/* Then, the self-training: */
for r = 1 : R do

/* 1 ≤ r<R (R : maximum learning
stages and an odd number) */

III. Generate pseudo labels pi for the unlabeled
data by using model θr−1, and select M1

good-quality ones using model θsc based on
Eq. 3;

if r is odd then
IV. Use downsampled whole images as input to

learn a model θr by optimizing Eq. 4;
else

IV. Use randomly cropped sub-volumes as
input to learn a model θr by optimizing Eq. 4;

end
end
return The learned model θR−1.

Algorithm 2: Training of shape-constrained network
Input: Labeled data {(xi, yi)|i ∈ (1, ..., N)} and the

learned teacher model θ0 in the initial stage
1. Off-line data augmentation: generate K different

predictions {pi,k} from each xi;
2. Learn the shape-constrained network θsc by

optimizing Eq. 2 with on-line data augmentation;
return The learned model θsc.

speaking, learning from downsampled input may require more
annotated data because one volume can only serve as one
training sample in this case compared to that in the crop-
ping approaches where one image provides multiple training
samples by the cropped sub-volumes. Because a very limited
number of labeled samples may not provide enough diversity
for supervised segmentation loss, we randomly crop the 3D
image into sub-volumes as input in this initial training stage.

B. Pseudo label selection

In practice, the unlabeled data may be acquired by different
machines with different protocols and thus have different
appearance patterns. A model learned from a limited number
of labeled samples may not produce satisfying predictions for
the unlabeled data. To select reliable pseudo labels at the initial
semi-supervised learning stage or self-training stage, we need
to estimate the quality of predictions.

Uncertainty estimation is a commonly used strategy, which
assumes that the certainty of prediction can estimate the
prediction accuracy. However, it may not work well for use

cases with only a few labeled samples because the data
variance is so limited that the trained model may produce
some wrong labels with high confidence on unseen data
and vice versa. Besides, for multi-label segmentation task,
boundaries and spatial information of substructures are useful.
Since the challenging or uncertain regions are usually along
boundaries, a voxel-level uncertainty estimation may lead to
isolated sub-regions and thus it is likely that some important
spatial information is missing in the filtered pseudo labels.

In this paper, we propose a new method for subject-level
pseudo label selection based on shape prior, which will select
unlabeled samples with an overall acceptable prediction for
the following learning. We assume that an overall acceptable
prediction is more helpful than some certain voxels in such
few-shot learning for robust segmentation and the accuracy
could be further improved as more and more reliable pseudo
labels are included in the self-training.

Our selection method is based on a shape prior estimation.
We use a convolutional auto-encoder network to directly learn
the shape and position information of the cardiac structures.
A diagram of the network is shown in the right box of
Fig. 1. The inputs to the network are the predictions of
labeled data, pi, and outputs are reconstructed shapes. Since
the number of available labeled data N could be very small,
we introduce various augmentation strategies to increase the
training samples by K times to train the auto-encoder network.
This model learns the shape prior by optimizing:

min
θsc

N∑
i=1

K∑
k=1

Lmse(fsc(pi,k; θsc), yi), (2)

where fsc and θsc denote the shape-constrained network and
its parameters, and pi,k is the augmented prediction. We
employ off-line and on-line augmentation strategies. For off-
line data augmentation, we collect predictions by using several
teacher model parameters saved at different epochs. For each
teacher model, we inject random Gaussian noise into a random
region in the input image and employ optional connected-
component post-processing to obtain various predictions. After
collecting K variants {pi,k} for each xi, we train the shape-
constrained network with additional on-line augmentation of
pi,k, such as random flip, rotation, and scaling. The training
process is summarized in Algorithm 2.

By this means, the shape-constrained model can learn to
fix incorrect segmentation results (especially for those outlier
results) by taking advantage of cardiac structures’ prior shape
and position information. Furthermore, we estimate the quality
of the pseudo labels by measuring the Hausdorff Distance
(HD) and Dice score between the predictions and their recon-
structed results. As a result, the smaller the HD, the higher its
quality. The selection of a high-quality pseudo label consists
of three steps. First, we compute statistics of HD and Dice
values for the cardiac structures in each subject. Then, we
sort the cases according to their average HD (HDmean) and
select M/2 pseudo labels with the smallest HDmean’s. Last,
we filter out some bad cases that do not meet the following
thresholds from the top-M/2 cases:

Dicemean ≥ 0.8 ∩HDmax ≤ HDmean + 1.8 ∗HDstd, (3)



6 IEEE TRANSACTIONS ON MEDICAL IMAGING, VOL. XX, NO. XX, XXXX 2017

initi-crop

self-down

self-crop

Fig. 2: Evolution of pseudo labels of five unlabeled samples
during the cascaded learning. The pseudo labels are becoming
better in each column.

where Dicemean, HDmax, and HDstd are the average Dice,
maximum HD, and standard deviation of HD of cardiac
substructures for each subject, respectively. As a result, we
have M1(≤M/2) selected pseudo labels. M1 tends to become
bigger after more learning stages. The strategy of filtering and
selection could be defined differently in other use cases. In
this work, because we found that the labels of PA are sparse
and inconsistent in different data samples, the statistics are
computed excluding PA.

Fig. 2 depicts the evolution of pseudo labels of five exam-
ples. It shows that pseudo labels getting improved during the
cascaded semi-supervised learning, and the shape-constrained
model gradually recognizes them as reliable labels to supervise
the model updating in the subsequent learning stage.

C. Self-training
Our cascaded framework has self-training stages follow-

ing the initial semi-supervised learning. Because the labeled
dataset is too small to be representative in the few-shot
context, the trained model could suffer a significant over-fitting
problem and a single semi-supervised learning may not be
enough to obtain satisfying results.

After pseudo label selection, both high-quality pseudo labels
and low-quality pseudo labels are used in the following self-
training stage. The objective function of the self-training stage
is:

min
θ
α

N+M1∑
i=1

Lce(f(xi; θ), yi(pi)) + β

M2∑
i=1

Lce(f(xi; θ), pi),

(4)
where M1 and M2 are the numbers of unlabeled data with
high-quality pseudo labels and low-quality pseudo labels,
respectively, such that M1 + M2 = M . yi(pi) equals to yi
for a labeled sample or the pseudo label for an unlabeled
sample. Weights α and β (α > β) control the contribution of
reliable and unreliable pseudo labels. In this way, more and
diverse supervisions are provided for the model learning and
the noisy pseudo labels cannot mislead the model much due
to the lower weight β. After training, predictions are renewed
for all unlabeled data and pseudo label estimation is conducted
again to update the training set.

During the self-training stages, it may be possible to update
the pseudo labels for unlabeled data and achieve better and
better model after iterations. However, simply repeating could
also lead to accumulative bias errors resulting in performance
drops. In this work, we use a simple yet effective strategy to
update the pseudo labels during self-training. Specifically, after
the initial learning stage, we adopt two different ways, namely
global-context learning and local-detail learning, to train our
3D CNN alternatively in cascaded stages. Note that during one
single learning stage, only one of these two strategies is used.
Although the self-training could continue for several rounds, in
this paper we only conduct one global-context learning stage
and one local-detail learning stage.

1) Global-context learning stage: A model is learned to
segment cardiac structures from a global perspective by using
downsampled images as input. In this way, global context
such as shape and relative positions can be better captured
to produce more robust segmentation results, in particular
preventing from isolated regions for a continuous object and
inconsistent label inside the same object.

2) Local-detail learning stage: Because of the different
characteristics of downsampling and cropping strategies, we
utilize them alternatively in the cascaded framework to avoid
accumulative bias. Therefore, a global-context learning stage
is followed by local-detail learning by using cropped sub-
volumes. This stage can help to further refine the local
boundary details in the prediction.

IV. EXPERIMENTS

A. Dataset
We collected three CTA datasets. The first one is the CTA

dataset from the MM-WHS 2017 Challenge [4]. This dataset
consists of 20 labeled data for training and 40 unlabeled data
for testing. The slices were acquired in the axial view. The
in-plane resolution is about 0.434 × 0.434 mm2 and the
average slice thickness is 0.596 mm. Each of the training
data has seven substructures of the heart labeled, including
left ventricle (LV), right ventricle (RV), left atrium (LA),
right atrium (RA), myocardium of LV (MYO), ascending
aorta (AO), and pulmonary artery (PA). The second dataset
contains 128 unlabeled CTA data from six different centers,
whose average in-plane resolution is 0.384 × 0.384 mm2

(range from 0.275 × 0.275 mm2 to 0.563 × 0.563 mm2)
and the average slice thickness is 0.469 mm (range from
0.250 mm to 0.625 mm). We train the segmentation models
by using a combination of different numbers of labeled data
and unlabeled data. We evaluate the models quantitatively
on 40 testing data of MM-WHS 2017 by using the open-
source evaluation code provided by the organizer and also
qualitatively on another 40 private testing data, which come
from the same centers as the 128 unlabeled data in training.
The third dataset has two 4D CTA data used for dynamic
analysis of heart function.

B. Experimental settings
Since we focus on few-shot semi-supervised learning in this

study, we design several experiments by using labeled samples



AUTHOR et al.: PREPARATION OF PAPERS FOR IEEE TRANSACTIONS AND JOURNALS (FEBRUARY 2017) 7

TABLE I: Results of few-shot learning (4 labeled and 64 unlabeled data) on the MM-WHS testing dataset by using the models
learned in different stages with different learning strategies, including average Dice, Jaccard, and HD (mm) for substructures,
and average ± std for ‘WHS’ scores. The bold fonts indicate the best values of each column in the sub-sections divided by
the middle rules.

Methods Substructures WHS
LV RV LA RA MYO AO PA mean

D
ic

e

baseline-crop 0.881 0.856 0.676 0.829 0.659 0.853 0.622 0.768 0.769±0.172
init-crop 0.903 0.830 0.776 0.766 0.745 0.795 0.629 0.778 0.807±0.114

self-down-r1 0.914 0.847 0.821 0.864 0.811 0.858 0.695 0.830 0.851±0.104
self-crop-r2 0.933 0.882 0.867 0.909 0.824 0.920 0.789 0.875 0.886±0.029
self-down-r3 0.916 0.845 0.845 0.885 0.803 0.891 0.721 0.844 0.858±0.059
self-crop-r4 0.935 0.890 0.872 0.895 0.831 0.943 0.798 0.881 0.890±0.038

self-fcrop-r1 0.928 0.883 0.840 0.866 0.820 0.886 0.739 0.852 0.869±0.083
self-fcrop-r2 0.934 0.883 0.858 0.893 0.812 0.922 0.749 0.864 0.878±0.046
self-fcrop-r3 0.935 0.882 0.860 0.885 0.818 0.926 0.729 0.862 0.879±0.042
self-fcrop-r4 0.937 0.851 0.858 0.873 0.803 0.937 0.754 0.859 0.869±0.041

self-down-r1(w/o sel) 0.915 0.824 0.800 0.854 0.771 0.828 0.688 0.811 0.830±0.105
self-crop-r2(w/o sel) 0.892 0.874 0.797 0.837 0.795 0.872 0.724 0.827 0.845±0.134

Ja
cc

ar
d

baseline-crop 0.810 0.753 0.574 0.758 0.539 0.812 0.498 0.678 0.650±0.191
init-crop 0.828 0.713 0.654 0.674 0.621 0.731 0.505 0.675 0.689±0.133

self-down-r1 0.850 0.739 0.714 0.794 0.697 0.801 0.574 0.738 0.750±0.119
self-crop-r2 0.877 0.790 0.768 0.838 0.708 0.857 0.667 0.787 0.796±0.045
self-down-r3 0.850 0.736 0.739 0.812 0.679 0.824 0.597 0.748 0.756±0.080
self-crop-r4 0.880 0.803 0.778 0.830 0.717 0.894 0.683 0.798 0.804±0.058

self-fcrop-r1 0.868 0.792 0.742 0.798 0.701 0.841 0.615 0.765 0.776±0.103
self-fcrop-r2 0.879 0.792 0.758 0.826 0.690 0.868 0.620 0.776 0.786±0.066
self-fcrop-r3 0.881 0.791 0.760 0.815 0.699 0.876 0.609 0.776 0.787±0.062
self-fcrop-r4 0.884 0.743 0.756 0.793 0.681 0.885 0.624 0.767 0.771±0.061

self-down-r1(w/o sel) 0.848 0.716 0.685 0.779 0.646 0.754 0.560 0.713 0.720±0.124
self-crop-r2(w/o sel) 0.828 0.780 0.692 0.770 0.679 0.827 0.611 0.741 0.749±0.147

H
D

(m
m

)

baseline-crop 11.069 27.104 15.726 36.433 14.340 10.361 20.898 19.419 46.229±29.285
init-crop 10.814 21.036 18.644 21.060 18.071 12.681 16.735 17.006 33.537±16.188

self-down-r1 7.354 14.478 12.136 15.792 12.756 7.414 12.900 11.833 21.742±13.415
self-crop-r2 6.558 12.655 10.805 15.453 9.544 5.229 9.493 9.962 18.245±7.511
self-down-r3 6.264 11.555 11.309 16.989 10.951 6.405 12.592 10.866 21.462±13.671
self-crop-r4 6.157 11.006 11.379 15.511 8.348 4.783 9.010 9.456 18.539±7.625

self-fcrop-r1 7.741 12.787 13.538 16.249 9.932 7.872 11.337 11.351 20.876±11.919
self-fcrop-r2 7.290 11.895 12.426 18.733 9.707 6.057 11.131 11.034 23.246±13.698
self-fcrop-r3 7.539 11.215 13.079 17.749 9.045 5.832 11.010 10.781 21.473±10.242
self-fcrop-r4 5.846 11.369 15.537 17.259 11.402 4.907 10.722 11.006 21.611±8.636

self-down-r1(w/o sel) 8.446 14.023 12.912 18.844 13.702 9.897 12.680 12.929 24.880±16.692
self-crop-r2(w/o sel) 9.836 16.193 14.247 17.115 11.279 7.616 13.699 12.855 24.571±14.595

from the MM-WHS dataset and unlabeled samples from our
private dataset. Firstly, we randomly select 4 labeled samples
and 64 unlabeled CTA scans for training to demonstrate
the ability of our method in a few-shot learning context. In
ablation studies, we investigate the effect of different numbers
of labeled and unlabeled data, as well as the suggested com-
ponents in our framework. Then, we compare the performance
of our best model with other state-of-the-art methods in the
MM-WHS challenge. For quantitative evaluation, we report
the average Dice score, Jaccard index, Hausdorff Distance
(HD) of every substructure, the mean value of scores for the
seven substructures (column ‘mean’ in the tables), and the
whole heart segmentation scores as utilized in the MM-WHS
challenge (column ‘WHS’). Note that, the column ‘mean’ is
different from the column ‘WHS’. The WHS scores for Dice
and Jaccard are the normalized metrics with respect to the size
of substructures while WHS HD is the maximum HD value

of all substructures [50]. We report standard deviations for
column WHS only in the tables due to the limited space. At
last, we demonstrate the performance of our best model in a
practical study of heart function using 4D CT data.

C. Implementation details

A tailored V-Net [34], [51] is employed as the backbone for
our framework. The encoder part of the network consists of
five scales connected by max-pooling layers. The first scale has
one convolutional layer converting the input into 16 channels.
There are two or three convolutional layers in the next four
scales, and the number of feature channels doubles at each
max pooling. We use IBN [52] in the first three scales to
increase both modeling and generalization capacity. Similar
to the encoder, the decoder part has four upsampling layers
and finally outputs an 8-channel prediction.
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Fig. 3: Qualitative and quantitative results (the WHS Dice) of six MM-WHS testing data (in 6 columns) achieved by the
proposed method using 4/16 labeled and 64 unlabeled data. The first row: one 2D slice of each original data from different
views overlaid with the segmentation contours. The second row: segmentation results generated by the model trained with 16
labeled data. The third row: segmentation results generated by the model trained with 4 labeled data.

The shape-constrained network consists of one input layer,
four encoder blocks, four decoder blocks, and one output
layer. The input layer transforms the one-hot prediction into
16-channel feature maps by 3D convolutions (conv3d). Each
encoder block has two conv3d layers. The first one has a
stride of two and increases the channel number by 16. The
second one keeps the same channel number. Each decoder
block has one upsampling layer, which doubles the spatial
dimensions of feature maps by trilinear interpolation, and one
conv3d layer, which decrease the channel number by 16. The
output convolution layer finally maps the channel number to
8 in this use case. Every conv3d layer uses a kernel size of 3
and padding of 1, followed by batch normalization and ReLU
activation. To alleviate the limitations of GPU memory and
keep global shape information, the input to the network is the
downsampled prediction.

In data preprocessing, the original cardiac CTA images were
resampled to 0.625 mm on three axes. The intensities were
normalized by 2048 and clamped between -1 and 1. We used
a pre-trained localization network to find the center of the
heart and then cropped an ROI of 288×288×288 from each
preprocessed image for the experiments. In all learning stages,
including the training of shape-constrained network, the size
of the input 3D volume was 144×144×144. Several data
augmentation techniques, such as scaling, rotation, flipping,
and elastic deformation, were randomly performed to increase
data variance. In order to control the balance between the
supervised loss and unsupervised consistency loss in Eq. 1,
we followed [17] to use a ramp-up coefficient λ(T ) = 10 ∗

e−5(1−T )2 , where T changes linearly from zero to one during
the ramp-up period. We set α = 0.8 and β = 0.2 for
Eq. 4 in our experiments. 4 out of 20 challenge training data
were reserved as the validation set to select model while the
remaining 16 labeled data were used in training. All networks
were trained for 3000 epochs with a minibatch size of 4. All
the implementations were performed in Pytorch by using 4
NVIDIA GeForce GTX 1080 Ti GPUs, and it took about 14,
22, and 25 hours, respectively, to train the models in the three
learning stages.

D. Results of Few-shot learning

In many practical applications, a good number of labeled
data is not always available. Considering the expenses of
annotation, it may be affordable to obtain only a few labeled
data. Therefore, the ability to learn from only a few labeled
samples has significant practical value. In this section, we
demonstrate the performance of our framework in a few-shot
learning context. Specifically, we randomly select 4 labeled
samples from the MM-WHS dataset and train the cascaded
networks with the help of 64 multi-center unlabeled data.

The results on the 40 MM-WHS testing data are shown in
Table I. For convenience, we name the results at the initial
semi-supervised learning stage init-crop since cropped images
are used as input. The global-context learning stage and local-
detail learning stage are denoted by self-down and self-crop,
respectively, followed by the corresponding stage index. The
baseline-crop is a baseline model trained with only 4 labeled
data by supervised learning. By comparing the results of
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Fig. 4: Qualitative results of 14 samples in our private dataset, generated by the model trained with 4 labeled data and 64
unlabeled data. The 2D views have the segmentation contours overlaid on the original images.

baseline-crop and init-crop, we can see that more unlabeled
data in semi-supervised learning can help to achieve a more
accurate and robust model. In our self-training stages, the
models are learned by using downsampled inputs and cropped
inputs alternatively. After the init-crop stage, we can perform
four rounds of proposed self-training, which are denoted by
self-down-r1, self-crop-r2, self-down-r3, self-crop-r4. We can
see from the results in Table I that the overall performance
tends to be improved with more learning rounds, which shows
the advantage of the proposed cascaded framework. We also
observe that the improvement speed decreases as more training
rounds. Specifically, by a paired t-test, the differences between
the results of self-crop-r2 and self-crop-r4 are not significant
in WHS Dice (p = 0.0808) and WHS HD (p = 0.7496). We
conclude that two rounds of self-training after the init-crop
should be enough and thus report the results using the models
of stage r = 2 by default in the following experiments. Since
16 labeled data are available for training, we trained three more
self-crop-r2 models by selecting different sets of 4 labeled data
in the training. The performances of the trained models are
slightly different. The average WHS Dice and WHS HD of
all the four models are 0.862 and 21.456 mm, respectively,
comparable to the results of self-crop-r2 in Table I (details are
reported in Table S1 of the supplementary materials).

Fig. 3 shows some qualitative results of six challenge testing
samples in 3D views and the corresponding WHS Dice scores
are also displayed. The first row shows one 2D slice from
each original volumetric image in different views. The second
row shows 3D views of corresponding predictions by using a
model trained with 16 labeled samples and 64 unlabeled data,

which will be detailed later. The third row shows the results by
using the model trained with only 4 labeled samples and the
same unlabeled data. Each column is for one subject. As we
can see that the model trained with only 4 labeled data can
still produce reasonable segmentation results, especially for
the hard testing cases by the model trained with 16 labeled
data.

Moreover, Fig. 4 shows 14 examples of segmentation results
in our private dataset. We can see that the proposed method is
robust to various image appearances and heart shapes despite
only 4 labeled samples are used in training. More segmentation
results on our private dataset can be found in Fig. S1 of the
supplementary materials.

We conduct several ablation studies to analyze the effects
of different components in our framework.

1) Effect of pseudo-label selection: After the ‘init-crop’
model, we train stage-2 and stage-3 models according to
Algorithm 1 but without the pseudo-label selection. The results
are shown as self-down-r1(w/o sel) and self-crop-r2(w/o sel)
in Table I. By comparing with the corresponding self-down-r1
and self-crop-r2 models, which employ the selection strategy,
we can see that the pseudo-label selection component benefits
the self-training with clearly improved results.

2) Effect of self-training: In Table I, we conduct another type
of cascaded learning to validate the effect of the proposed self-
training method which uses cropped and downsampled input
alternatively. This variant of self-training is a series of learning
stages that keep using cropped input only. They are denoted
by self-fcrop-r1, self-fcrop-r2, self-fcrop-r3, self-fcrop-r4. We
have two observations based on the results in Table I. First,
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TABLE II: Results on the MM-WHS testing dataset by using the models learned from different numbers of labeled data and
64 unlabeled data, including average Dice, Jaccard, and HD (mm) for substructures, and average ± std for ‘WHS’ scores.

Labeled Unlabeled Substructures WHS
LV RV LA RA MYO AO PA mean

D
ic

e 4 64 0.933 0.882 0.867 0.909 0.824 0.920 0.789 0.875 0.886±0.029
8 64 0.938 0.897 0.896 0.906 0.856 0.886 0.781 0.880 0.898±0.039

16 64 0.946 0.913 0.910 0.926 0.885 0.937 0.832 0.907 0.917±0.022

Ja
cc

ar
d 4 64 0.877 0.790 0.768 0.838 0.708 0.857 0.667 0.787 0.796±0.045

8 64 0.885 0.815 0.815 0.835 0.756 0.843 0.677 0.804 0.817±0.061
16 64 0.898 0.841 0.837 0.864 0.799 0.887 0.732 0.837 0.848±0.037

H
D

4 64 6.558 12.655 10.805 15.453 9.544 5.229 9.493 9.962 18.245±7.511
8 64 7.463 10.550 10.491 14.969 8.681 7.819 9.802 9.968 20.386±12.980

16 64 6.055 9.468 8.743 13.315 7.610 4.775 7.983 8.278 15.709±6.684

TABLE III: Results of different methods, including supervised (s) and semi-supervised (ss) approaches, on the MM-WHS testing
dataset, including average Dice, Jaccard, and HD (mm) for substructures, and average ± std for ‘WHS’ scores. + indicates
the results are cited from the corresponding paper; ∗ indicates the results are implemented by us

.

Methods Substructures WHS
LV RV LA RA MYO AO PA mean

D
ic

e

Yang [36] (s)+ - - - - - - - - 0.890±0.049
Wang [38] (s)+ - - - - - - - - 0.894±0.030
Payer [31] (s)+ 0.918 0.909 0.929 0.888 0.881 0.933 0.840 0.900 0.908±0.086

Li [13] (ss)∗ 0.914 0.901 0.869 0.878 0.849 0.933 0.761 0.872 0.883±0.110
Nie [23] (ss)∗ 0.931 0.889 0.884 0.894 0.840 0.909 0.794 0.878 0.890±0.052
Xie [11] (ss)∗ 0.939 0.881 0.896 0.877 0.862 0.921 0.795 0.883 0.895±0.023
Yu [22] (ss)∗ 0.942 0.886 0.892 0.913 0.873 0.945 0.821 0.896 0.904±0.029

ours (ss) 0.946 0.913 0.910 0.926 0.885 0.937 0.832 0.907 0.917±0.022

Ja
cc

ar
d

Yang [36] (s)+ - - - - - - - - 0.805±0.074
Wang [38] (s)+ - - - - - - - - 0.810±0.048
Payer [31] (s)+ - - - - - - - - 0.832±0.037

Li [13] (ss)∗ 0.863 0.823 0.789 0.807 0.758 0.880 0.663 0.798 0.803±0.129
Nie [23] (ss)∗ 0.874 0.803 0.799 0.812 0.744 0.852 0.686 0.796 0.806±0.073
Xie [11] (ss)∗ 0.886 0.788 0.814 0.801 0.763 0.855 0.678 0.798 0.810±0.037
Yu [22] (ss)∗ 0.893 0.798 0.809 0.844 0.781 0.896 0.714 0.819 0.826±0.048

ours (ss) 0.898 0.841 0.837 0.864 0.799 0.887 0.732 0.837 0.848±0.037

H
D

(m
m

)

Yang [36] (s)+ - - - - - - - - 29.006±15.804
Wang [38] (s)+ - - - - - - - - 31.146±13.203
Payer [31] (s)+ - - - - - - - - 25.242±10.813

Li [13] (ss)∗ 8.749 11.868 11.610 15.927 10.262 6.159 11.335 10.844 20.660±16.361
Nie [23] (ss)∗ 7.515 12.122 15.274 17.310 8.871 6.384 9.994 11.067 23.153±12.624
Xie [11] (ss)∗ 6.453 11.026 13.911 14.199 8.469 4.907 9.014 9.711 18.480±6.799
Yu [22] (ss)∗ 6.589 11.308 10.123 13.385 8.557 5.266 8.163 9.056 17.427±9.505

ours (ss) 6.055 9.468 8.743 13.315 7.610 4.775 7.983 8.278 15.709±6.684

although the variant can also lead to better performance
with more stages, the improvement decreases quickly and
the performance even drops after three rounds due to the
accumulative bias. Second, the proposed method by alternating
downsampling and cropping can achieve more robust results
than simply repeating cropping. Although downsampling gen-
erally has inferior results to the cropping at the same stage
(e.g., self-down-r1 vs self-fcrop-r1 and self-down-r3 vs self-
fcrop-r3) due to inaccurate boundaries in low-resolution data,
the following stage can be improved more significantly in the
proposed framework thanks to the complementary information
learned in the global context.

3) Effect of training set size: To validate the performance of
the proposed method for different sizes of the training set, we
train models with different numbers of labeled data when the
number of unlabeled samples is fixed. The results are reported

in Table II (more detailed results for different stages can be
found in Table S2 of the supplementary materials).

From the results in Table II, we can observe that the learning
process benefits from an increasing number of labeled data in
general. It is interesting to see in Fig. 3 and Table II that the
results by using 4 labeled data are comparable to those by
using 16 labeled data.

On the other hand, an increasing number of unlabeled data
does not benefit the learning process with 4 labeled samples
(see Table S3 of the supplementary materials). A possible
reason is that the unlabeled private dataset has very different
appearances from the challenge dataset, and more unlabeled
data with higher variance tends to make the learning harder.
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Fig. 5: Comparison of average WHS Dice, WHS Jaccard, and WHS HD achieved by Yu [22] (implemented by us) and the
proposed method using different numbers of labeled training data and 64 unlabeled data.

E. WHS challenge

Here, we compare the proposed method with state-of-the-
art supervised methods in the MM-WHS 2017 challenge and
other recent approaches based on semi-supervised learning.
To compare with other methods more fairly, we use the
proposed model trained with 16 labeled data and 64 unlabeled
data in this subsection. As a supervised learning method,
the approach proposed by Payer et al. [31] was the first-
ranked submission in the challenge, which uses a coarse-to-
fine learning technique. The second-ranked and third-ranked
methods [36], [38] are also included in Table III. The proposed
method achieves improvements in all metrics and obtains the
average WHS Dice of 0.917, WHS Jaccard of 0.848, and WHS
HD of 15.709 mm. Although the improvements in WHS Dice
and WHS Jaccard are slight, the WHS HD is significantly
better than [31] (about 38% improvement and p < 0.0001 by
an unpaired t-test since we don’t have their individual results),
which indicates that our method is robust enough to handle
those hard cases for the other algorithms.

In Table III, we also report the results by some other semi-
supervised methods proposed recently (implemented for the
WHS task), including two self-training methods [11], [13],
a mean teacher-based method [22] and a GAN-based semi-
supervised method [23]. In the implementation of the above
methods, we used the same 16 labeled and 64 unlabeled
data for training and the same 3D CNN-based backbone as
in our framework for a fair comparison. Li et al. [13] pro-
posed the self-training method combined with a cooperative-
training strategy, i.e., two models are trained from each other’s
predictions iteratively. Although it prevents the model from
getting stuck in its local minimum, the lack of a mechanism
for selecting pseudo labels for the unlabeled data affects
the experimental results. Nie et al. [23] designed an adver-
sarial network to learn the confidence map to incorporate
a voxel-level pseudo-label selection in the learning process.
However, due to the limited labeled data in the WHS task,
the adversarial network may not be trained sufficiently so
that too few confident voxels in unlabeled data are selected
to help the learning. The self-training framework proposed
by Xie et al. [11] can improve generalization in ImageNet
classification by injecting noise such as data augmentation via
RandAugment, dropout, and stochastic depth to the student
model during training. To extend this 2D classification method
for the WHS task, we adopted dropout and stochastic depth

for the 3D CNN model and replaced the RandAugment with
random augmentation operations such as rotation, flipping,
scaling, and elastic deformation. The method of Yu et al. [22]
let the student model gradually learn from meaningful and
reliable targets by exploiting the voxel-level uncertainty infor-
mation. Among these comparing methods, Yu [22] achieves
the best performance in Table III. By a paired t-test, the
results obtained by our method are significantly better than
[22] in terms of WHS Dice (p < 0.0001) and WHS Jaccard
(p < 0.0001), which indicate the effectiveness of our method.

Furthermore, we choose the method by Yu [22] as a repre-
sentative semi-supervised method and carry out experiments
in the few-shot learning context with 4 labeled data and
8 labeled data. We select Yu’s method to compare in this
setting because it has relatively better results than the other
comparing approaches in Table III, and it also achieves state-
of-the-art performance on a 3D LA segmentation task [22]
by comparing with different semi-supervised methods such as
[12], [16], [18], [23]. The comparison of average WHS Dice,
WHS Jaccard, and WHS HD are plotted in Fig. 5. We can see
that our method shows more advantages with fewer labeled
data, which means that it has great potential when only a few
labeled data are available.

F. 4D case study
In this section, we apply our model to 4D (3D+T) CTA data

for dynamic analysis of heart function. High-resolution 4D CT
provides the clinician with high-quality anatomical images.
An accurate 4D heart model can further provide intuitive
visualization of cardiac motion and quantitative strain analysis
to help in clinical practice, such as disease diagnosis and
surgery planning. To this end, we employ the proposed method
to segment cardiac structures at every frame in a cardiac cycle.
Here, we use the model trained with 16 labeled data to do the
prediction. The segmentation results of two subjects at 9 out
of 19 frames of a whole cardiac cycle are shown in Fig. 6.
Fig. 6a is a diseased heart while Fig. 6b shows a normal heart.
We can see that our segmentation results are continuous and
accurate in both diseased and normal hearts. Based on the 4D
segmentation results, the left ventricular volume curves over
time are computed and plotted on the right. The diseased LV
volume is much larger than the normal one, which could be a
sign of chronic hypertension, myocardial infarction, or heart
valve disease. Compared with the Ejection Fraction (EF) of
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Fig. 6: 4D case study: segmentation results of 9 frames in a cardiac cycle and the evolution curve of the LV volume for a
diseased heart (a) and a normal heart (b).

65% of the normal heart, the EF of 17% of the diseased heart
reflects some abnormalities of the LV in this subject. The
predicted EF values are associate with the values computed
from the echocardiogram: 68% for the normal case and 21%
for the diseased case. A video representing the 4D whole
heart segmentation results can be found in the supplementary
materials.

V. CONCLUSION

We proposed a novel and easy-to-implement cascaded
framework for semi-supervised segmentation and successfully
applied in WHS. It combines the ideas of mean teacher
and self-training. With the proposed framework, a robust
segmentation model can be trained from only a few labeled
data. Moreover, an effective shape-constrained network was
proposed to select reliable pseudo labels for self-training. We
extensively evaluated our method on 40 MM-WHS testing
data and some private data. The accurate results of multi-
center data demonstrated its effectiveness and generalization
ability. Despite the focus on WHS in this paper, our framework
can also be extended for wider use. For example, in the
near future, we will extend our cascaded framework to 4D
cardiac segmentation, where annotating every frame in the
whole cardiac cycle is impractical, by exploiting the extra
temporal information between consecutive frames, instead of
segmenting each frame individually as done in our 4D case
study.
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[38] C. Wang and Ö. Smedby, “Automatic whole heart segmentation using
deep learning and shape context,” in International Workshop on Statis-
tical Atlases and Computational Models of the Heart. Springer, 2017,
pp. 242–249.

[39] A. Mortazi, J. Burt, and U. Bagci, “Multi-planar deep segmentation
networks for cardiac substructures from MRI and CT,” in International
Workshop on Statistical Atlases and Computational Models of the Heart.
Springer, 2017, pp. 199–206.

[40] H. Zheng, L. Yang, J. Han, Y. Zhang, P. Liang, Z. Zhao, C. Wang,
and D. Z. Chen, “HFA-Net: 3D cardiovascular image segmentation
with asymmetrical pooling and content-aware fusion,” in International
Conference on Medical Image Computing and Computer-Assisted Inter-
vention. Springer, 2019, pp. 759–767.

[41] M. S. Nosrati and G. Hamarneh, “Incorporating prior knowledge in med-
ical image segmentation: a survey,” arXiv preprint arXiv:1607.01092,
2016.

[42] T. F. Cootes, C. J. Taylor, D. H. Cooper, and J. Graham, “Active
shape models-their training and application,” Computer vision and image
understanding, vol. 61, no. 1, pp. 38–59, 1995.

[43] C. Davatzikos, X. Tao, and D. Shen, “Hierarchical active shape models,
using the wavelet transform,” IEEE transactions on medical imaging,
vol. 22, no. 3, pp. 414–423, 2003.

[44] S. Zhang, Y. Zhan, M. Dewan, J. Huang, D. N. Metaxas, and X. S.
Zhou, “Towards robust and effective shape modeling: Sparse shape
composition,” Medical image analysis, vol. 16, no. 1, pp. 265–277, 2012.

[45] S. Zhang, Y. Zhan, and D. N. Metaxas, “Deformable segmentation via
sparse representation and dictionary learning,” Medical Image Analysis,
vol. 16, no. 7, pp. 1385–1396, 2012.

[46] G. Wang, S. Zhang, H. Xie, D. N. Metaxas, and L. Gu, “A homotopy-
based sparse representation for fast and accurate shape prior modeling
in liver surgical planning,” Medical image analysis, vol. 19, no. 1, pp.
176–186, 2015.

[47] O. Oktay, E. Ferrante, K. Kamnitsas, M. Heinrich, W. Bai, J. Caballero,
S. A. Cook, A. De Marvao, T. Dawes, D. P. O‘Regan et al., “Anatom-
ically constrained neural networks (ACNNs): application to cardiac
image enhancement and segmentation,” IEEE transactions on medical
imaging, vol. 37, no. 2, pp. 384–395, 2017.

[48] H. Ravishankar, R. Venkataramani, S. Thiruvenkadam, P. Sudhakar,
and V. Vaidya, “Learning and incorporating shape models for semantic
segmentation,” in International conference on medical image computing
and computer-assisted intervention. Springer, 2017, pp. 203–211.

[49] A. V. Dalca, J. Guttag, and M. R. Sabuncu, “Anatomical priors in
convolutional networks for unsupervised biomedical segmentation,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2018, pp. 9290–9299.

[50] X. Zhuang, “Challenges and methodologies of fully automatic whole
heart segmentation: a review,” Journal of healthcare engineering, vol. 4,
no. 3, pp. 371–407, 2013.

[51] F. Milletari, N. Navab, and S.-A. Ahmadi, “V-net: Fully convolutional
neural networks for volumetric medical image segmentation,” in 2016
Fourth International Conference on 3D Vision (3DV). IEEE, 2016, pp.
565–571.

[52] X. Pan, P. Luo, J. Shi, and X. Tang, “Two at once: Enhancing learning
and generalization capacities via ibn-net,” in Proceedings of the Euro-
pean Conference on Computer Vision (ECCV), 2018, pp. 464–479.


	Introduction
	Related work
	Semi-supervised image segmentation
	CNN-based 3D cardiac segmentation
	Shape prior for segmentation

	Methods
	Initial Semi-supervised Learning
	Pseudo label selection
	Self-training
	Global-context learning stage
	Local-detail learning stage


	Experiments
	Dataset
	Experimental settings
	Implementation details
	Results of Few-shot learning
	Effect of pseudo-label selection
	Effect of self-training
	Effect of training set size

	WHS challenge
	4D case study

	Conclusion
	References

